The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque...The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque disturbance has been achieved,the number of disturbance frequencies should be known.In this paper,an adaptive observer-based error feedback control method is proposed,which can solve the speed tracking control problem of PMSM subject to completely unknown multi-frequency sinusoidal load torque disturbance,requiring only the upper bound of the number of disturbance frequencies.The design steps of this method can be divided into the following three steps.In step one,a filtered transformation is applied to convert the observer canonical form of the error system and the transformed exosystem into an adaptive observer form.In step two,an adaptive observer is designed to estimate the unknown parameters of the exosystem and states of the adaptive observer form.In step three,an adaptive observer-based error feedback controller is designed to solve this control problem.The effectiveness of the proposed method is demonstrated by experimental results.展开更多
For permanent magnet synchronous machines(PMSMs),accurate inductance is critical for control design and condition monitoring.Owing to magnetic saturation,existing methods require nonlinear saturation model and measure...For permanent magnet synchronous machines(PMSMs),accurate inductance is critical for control design and condition monitoring.Owing to magnetic saturation,existing methods require nonlinear saturation model and measurements from multiple load/current conditions,and the estimation is relying on the accuracy of saturation model and other machine parameters in the model.Speed harmonic produced by harmonic currents is inductance-dependent,and thus this paper explores the use of magnitude and phase angle of the speed harmonic for accurate inductance estimation.Two estimation models are built based on either the magnitude or phase angle,and the inductances can be from d-axis voltage and the magnitude or phase angle,in which the filter influence in harmonic extraction is considered to ensure the estimation performance.The inductances can be estimated from the measurements under one load condition,which is free of saturation model.Moreover,the inductance estimation is robust to the change of other machine parameters.The proposed approach can effectively improve estimation accuracy especially under the condition with low current magnitude.Experiments and comparisons are conducted on a test PMSM to validate the proposed approach.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Permanent magnet synchronous motor(PMSM)for EV/HEV pursues higher efficiency,higher power density,higher rotation speed and better NVH performance.To meet these requirements,an improved triangle rotor topology is pres...Permanent magnet synchronous motor(PMSM)for EV/HEV pursues higher efficiency,higher power density,higher rotation speed and better NVH performance.To meet these requirements,an improved triangle rotor topology is presented.The new rotor topology is researched through comparing the performance with V shape rotor and traditional triangle shape rotor.The comparing results on air-gap flux density,key order radial forces,sound pressure,inductance,torque,anti-demagnetization capability and efficiency proved the advantage of the new rotor topology.展开更多
A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control the...A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.展开更多
通过对模型参考自适应(MRAS)理论的研究,设计了一种基于MRAS理论的高精度永磁同步电机无速度传感器矢量控制算法。借助Matlab/Simulink工具对此控制系统进行了仿真研究,得到了与理论分析一致的仿真波形。为进一步检验控制策略的可行性,...通过对模型参考自适应(MRAS)理论的研究,设计了一种基于MRAS理论的高精度永磁同步电机无速度传感器矢量控制算法。借助Matlab/Simulink工具对此控制系统进行了仿真研究,得到了与理论分析一致的仿真波形。为进一步检验控制策略的可行性,在额定功率为2.2 k W、型号为SMTP100L1-50-22-4的永磁同步电机上进行验证实验,并与有速度传感器矢量控制相对比。实验结果表明,基于MRAS理论的无速度传感器控制可以替代光电编码器,很好地完成电机调速。展开更多
基金supported by the National Natural Science Foundation of China(Nos.62273127 and 62073217)the Dreams Foundation of Jianghuai Advance Technology Center(No.2023-ZM01J006)the Anhui Provincial Key Research and Development Project(No.2022a05020025).
文摘The output regulation approach has effectively addressed the speed tracking and disturbance rejection problem of permanent magnet synchronous motor(PMSM).Although accurate speed tracking under time-varying load torque disturbance has been achieved,the number of disturbance frequencies should be known.In this paper,an adaptive observer-based error feedback control method is proposed,which can solve the speed tracking control problem of PMSM subject to completely unknown multi-frequency sinusoidal load torque disturbance,requiring only the upper bound of the number of disturbance frequencies.The design steps of this method can be divided into the following three steps.In step one,a filtered transformation is applied to convert the observer canonical form of the error system and the transformed exosystem into an adaptive observer form.In step two,an adaptive observer is designed to estimate the unknown parameters of the exosystem and states of the adaptive observer form.In step three,an adaptive observer-based error feedback controller is designed to solve this control problem.The effectiveness of the proposed method is demonstrated by experimental results.
基金supported in part by the National Natural Science Foundation of China(62473387)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP241)the Department of Science and Technology of Guangdong Province(2021QN020085)。
文摘For permanent magnet synchronous machines(PMSMs),accurate inductance is critical for control design and condition monitoring.Owing to magnetic saturation,existing methods require nonlinear saturation model and measurements from multiple load/current conditions,and the estimation is relying on the accuracy of saturation model and other machine parameters in the model.Speed harmonic produced by harmonic currents is inductance-dependent,and thus this paper explores the use of magnitude and phase angle of the speed harmonic for accurate inductance estimation.Two estimation models are built based on either the magnitude or phase angle,and the inductances can be from d-axis voltage and the magnitude or phase angle,in which the filter influence in harmonic extraction is considered to ensure the estimation performance.The inductances can be estimated from the measurements under one load condition,which is free of saturation model.Moreover,the inductance estimation is robust to the change of other machine parameters.The proposed approach can effectively improve estimation accuracy especially under the condition with low current magnitude.Experiments and comparisons are conducted on a test PMSM to validate the proposed approach.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金This work was supported by the National Support Plan Project(2015BAG04B01)the annual plan project of industry university research cooperation of Shanghai(HU CXY-2015-014).
文摘Permanent magnet synchronous motor(PMSM)for EV/HEV pursues higher efficiency,higher power density,higher rotation speed and better NVH performance.To meet these requirements,an improved triangle rotor topology is presented.The new rotor topology is researched through comparing the performance with V shape rotor and traditional triangle shape rotor.The comparing results on air-gap flux density,key order radial forces,sound pressure,inductance,torque,anti-demagnetization capability and efficiency proved the advantage of the new rotor topology.
文摘A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.
文摘通过对模型参考自适应(MRAS)理论的研究,设计了一种基于MRAS理论的高精度永磁同步电机无速度传感器矢量控制算法。借助Matlab/Simulink工具对此控制系统进行了仿真研究,得到了与理论分析一致的仿真波形。为进一步检验控制策略的可行性,在额定功率为2.2 k W、型号为SMTP100L1-50-22-4的永磁同步电机上进行验证实验,并与有速度传感器矢量控制相对比。实验结果表明,基于MRAS理论的无速度传感器控制可以替代光电编码器,很好地完成电机调速。