A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher...A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher hole mobility for the DTBT.Furthermore,the enhancement in molecular planarity with simple thiophene unit increases the hole mobility of DTBT(8.77×10^-4cm^2 V^-1s^-1)by about 40%.And when DTBT is used as hole transport material in perovskite solar cells,the photoelectric conversion efficiency of the corresponding dopant-free devices is also significantly improved compared with that of the conventional BT model molecule without thiophene.In terms of device stability,DTBT-based devices show a favorable long-term stability,which keep 83%initial efficiency after 15 days.Therefore,the introducing of thiophene bridges in D-A-D typed HTMs can improve the molecular planarity effectively,thereby increasing the hole mobility and improving device performance.展开更多
We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weight...We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weighted planar stochastic lattice(a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks: the hexagonal lattice and the random regular network with the same degree k_0= 6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game(the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule(the Fermi, replicator or unconditional imitation rules).展开更多
The Pfaffian property of graphs is of fundamental importance in graph theory,as it precisely characterizes those graphs for which the number of perfect matchings can be computed in polynomial time with respect to the ...The Pfaffian property of graphs is of fundamental importance in graph theory,as it precisely characterizes those graphs for which the number of perfect matchings can be computed in polynomial time with respect to the number of edges.The study of Pfaffian graphs originated from the enumeration of perfect matching in planar graphs.References[5,6,8]demonstrated that every planar graph is Pfaffian.Therefore,the Pfaffian property and planarity of graphs play a vital role in modern matching theory.This paper contributes a complete characterization of the Pfaffian property and planarity of connected Cayley graphs over the dicyclic group T_(4n) of order 4n(n≥3),shows that the Cayley graph Cay(T_(4n),S)is Pfaffian if and only if n is odd and S={a^(k_(1)),a^(2n−k_(1)),ba^(k_(2)),ba^(n+k_(2))},where 1≤k_(1)≤n−1,0≤k_(2)≤n−1 and(k_(1),n)=1,and furthermore,shows that Cay(T4n,S)is never planar.展开更多
The movement of interacting faults within the Earth’s crust during earthquakes may cause significant structural damage.Large earthquake fault surfaces are often planar or a combination of several planar fault segment...The movement of interacting faults within the Earth’s crust during earthquakes may cause significant structural damage.Large earthquake fault surfaces are often planar or a combination of several planar fault segments.This study analyses the interaction between a non-planar and a planar fault,where the faults are inclined,buried,creeping and strike-slip in nature.The non-planar fault is infinite and formed by two interconnected planar segments,while the planar fault is finite.The present analysis adduces the movement of interacting faults in a composite structure comprised of an elastic layer nested on a visco-elastic substrate of Maxwell medium.The significant effect of various affecting parameters viz.inclination of the faults,velocity of the fault movement,depth of the faults from the free surface,distance between the faults and the non-planarity of the fault has been discussed and also compared.The amount of stress and surface shear strain is restored after the creeping movement.The graphical representation of the effect of non-planarity of the fault on stress-strain accumulation has been established.Analytical solutions are obtained using Laplace transform and Green’s function techniques,supported by numerical simulations.The obtained results provide insights into fault interaction process and have important implications for assessing seismic hazard potential in viscoelastic media.The study of such earthquake fault dynamical models may give some ideas about the nature of stress-strain accumulation or release in the system and help us to observe the mechanism of lithosphere-asthenosphere boundary.展开更多
To date,extensive efforts have been devoted to designing new conjugated polymers with long alkyl or ethylene glycol sidechains.However,these sidechains are insulators,limiting further performance enhancement in doped ...To date,extensive efforts have been devoted to designing new conjugated polymers with long alkyl or ethylene glycol sidechains.However,these sidechains are insulators,limiting further performance enhancement in doped conjugated polymers.Moreover,the most widely used chlorinated solvents are toxic,limiting the practical applications of many conjugated polymers.Here,we report a water/alcohol processable n-type conjugated polymer P(Py2FT),featuring side chain-free cationic backbones.P(Py2FT)exhibits a high n-type electrical conductivity of up to 28.1 S cm^(−1)and a high thermoelectric power factor of up to 28.7μWm^(−1)K^(−2),comparable to some conventional n-type conjugated polymers reported recently.More importantly,cationic polymers display tight molecular packings and interesting enhanced backbone planarity after n-doping,which,we envision,provides a new research direction to address the sidechain issue in conventional conjugated polymers.Our work demonstrates that sidechain-free cationic polymers have great potential for green-solvent-processed heavily doped organic electronics.展开更多
Self-assembly of dyes has become a flexible strategy to modulate their photophysical properties.H-aggregates show great potential to increase heat generation,while the precise designing of H-aggregates as efficient ph...Self-assembly of dyes has become a flexible strategy to modulate their photophysical properties.H-aggregates show great potential to increase heat generation,while the precise designing of H-aggregates as efficient photothermal agents is still challenging.Herein,a quinoline cyanine(QCy)is developed for constructing stable H-aggregated nanoparticles(NPs)to significantly enhance photostability and photothermal conversion efficiency(PCE).With symmetrical rigid planar quinoline structures,QCy has a small and symmetrical dihedral angle(11.9°),which ensures excellent molecular planarity.In aqueous solution,the planar QCy can form closeπ–πmolecular stacking,and fast self-assemble into stable H-aggregates even at low concentrations(1×10−7 M).QCy H-aggregates are sphere-like NPs(QCy NPs)with an average diameter of 120 nm and exhibit high stability.H-aggregation of QCy significantly enhances PCE from 20.1%(non-H-aggregated QCy)to 63.8%(QCy NPs).In addition,the positive charge of quaternarized quinoline provides mitochondrial anchoring ability,which further enhances the photothermal effect.With high PCE and tumor accumulation,QCy NPs in low-doses have been successfully used in photoacoustic imaging-guided tumor photothermal therapy.展开更多
With the use of a chemical-mechanical polishing (CMP) simulator verified by testing data from a foundry, the effect of dummy fill characteristics, such as fill size, fill density and fill shape, on CMP planarity is ...With the use of a chemical-mechanical polishing (CMP) simulator verified by testing data from a foundry, the effect of dummy fill characteristics, such as fill size, fill density and fill shape, on CMP planarity is analyzed. The results indicate that dummy density has a significant impact on oxide erosion, and copper dishing is in proportion to dummy size. We also demonstrate that cross shape dummy fill can have the best dishing performance at the same density.展开更多
A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in al...A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in all t-tone colorings of that graph.In this article,we study t-tone coloring of some finite planar lattices and obtain exact formulas for their t-tone chromatic number.展开更多
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However...Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.展开更多
A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,a...A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.展开更多
A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d.It was known that planar graphs are 5-degenerate and every planar graph without k-cycles for some prescribed k∈{3,5,6}is 3-dege...A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d.It was known that planar graphs are 5-degenerate and every planar graph without k-cycles for some prescribed k∈{3,5,6}is 3-degenerate.In this paper,we show that if G is a planar graph without kites and 9-or 10-cycles,then G is 3-degenerate,hence 4-choosable and list vertex 2-arborable.展开更多
DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improve...DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improves the results of[Discrete Math.,2018,341(7):1983–1986]and[Discrete Appl.Math.,2020,277:245–251].展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio...A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.展开更多
The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dyn...The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dynamical features of the hard-core Bose–Hubbard model on this lattice and study the excitation spectra by combining stochastic analytic continuation and quantum Monte Carlo simulation. In both PVBS and SF phases,a flat band with bow-tie structure is observed and can be explained by certain symmetries. At the transition point,the spectra turn to be continuous and gapless. A(2+1)-dimensional Abelian–Higgs model with mixed 't Hooft anomaly is proposed to describe the transition, where the anomaly matching predicts that the deconfinement can exist on the domain walls. From the snapshot of the spin configuration in real space, we found the existence of the domain wall. We also found that the spectrum along a specific path in momentum space from PVBS phase to the transition point can be well described by an XXZ spin chain, and the critical theory of XXZ spin chain matches the anomaly. The two-spinon continuum along this specific path implies additional domain walls(point defect) can emerge in the domain walls(line defect) and take the role of deconfinement at the transition point.展开更多
Planar chiral cyclophanes are a type of structurally intriguing organic molecules,which have found increasingly applications in the field of biologically active compounds,asymmetric catalysis,and optically pure materi...Planar chiral cyclophanes are a type of structurally intriguing organic molecules,which have found increasingly applications in the field of biologically active compounds,asymmetric catalysis,and optically pure materials.As such,significant efforts in the development of new methods to build up enantioenriched cyclophanes in a precise manner have attracted increased attention in recent years.Among the plethora of reported synthetic strategies,catalytic enantioselective method has emerged as one of the most straightforward and efficient ways to deliver optically pure planar chiral cyclophanes.In this review,the recent progress in catalytic enantioselective reactions for the synthesis of planar chiral cyclophanes will be discussed,which would stimulate the research interest of chemists for the discovery of novel asymmetric strategies for the preparation of valuable and previously difficult-to-access chiral molecules.展开更多
Multispectral imaging plays a crucial role in simultaneously capturing detailed spatial and spectral information,which is fundamental for understanding complex phenomena across various domains.Traditional systems face...Multispectral imaging plays a crucial role in simultaneously capturing detailed spatial and spectral information,which is fundamental for understanding complex phenomena across various domains.Traditional systems face significant challenges,such as large volume,static function,and limited wavelength selectivity.Here,we propose an innovative dynamic reflective multispectral imaging system via a thermally responsive cholesteric liquid crystal based planar lens.By employing advanced photoalignment technology,the phase distribution of a lens is imprinted to the liquid crystal director.The reflection band is reversibly tuned from 450 nm to 750 nm by thermally controlling the helical pitch of the cholesteric liquid crystal,allowing selectively capturing images in different colors.This capability increases imaging versatility,showing great potential in precision agriculture for assessing crop health,noninvasive diagnostics in healthcare,and advanced remote sensing for environmental monitoring.展开更多
基金the National Key R&D Program of China(2018YFB1500101)National Basic Research Program of China(No.2015CB932200)CAS-Iranian Vice Presidency for Science and Technology Joint Research Project(No.116134KYSB20160130).
文摘A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher hole mobility for the DTBT.Furthermore,the enhancement in molecular planarity with simple thiophene unit increases the hole mobility of DTBT(8.77×10^-4cm^2 V^-1s^-1)by about 40%.And when DTBT is used as hole transport material in perovskite solar cells,the photoelectric conversion efficiency of the corresponding dopant-free devices is also significantly improved compared with that of the conventional BT model molecule without thiophene.In terms of device stability,DTBT-based devices show a favorable long-term stability,which keep 83%initial efficiency after 15 days.Therefore,the introducing of thiophene bridges in D-A-D typed HTMs can improve the molecular planarity effectively,thereby increasing the hole mobility and improving device performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575072 and 11475074)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2017-172)
文摘We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks: the weighted planar stochastic lattice(a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks: the hexagonal lattice and the random regular network with the same degree k_0= 6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game(the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule(the Fermi, replicator or unconditional imitation rules).
基金supported by NSFC(No.12201202)NSF of Hunan Province(No.2023JJ30180)NSFC(No.12471022)。
文摘The Pfaffian property of graphs is of fundamental importance in graph theory,as it precisely characterizes those graphs for which the number of perfect matchings can be computed in polynomial time with respect to the number of edges.The study of Pfaffian graphs originated from the enumeration of perfect matching in planar graphs.References[5,6,8]demonstrated that every planar graph is Pfaffian.Therefore,the Pfaffian property and planarity of graphs play a vital role in modern matching theory.This paper contributes a complete characterization of the Pfaffian property and planarity of connected Cayley graphs over the dicyclic group T_(4n) of order 4n(n≥3),shows that the Cayley graph Cay(T_(4n),S)is Pfaffian if and only if n is odd and S={a^(k_(1)),a^(2n−k_(1)),ba^(k_(2)),ba^(n+k_(2))},where 1≤k_(1)≤n−1,0≤k_(2)≤n−1 and(k_(1),n)=1,and furthermore,shows that Cay(T4n,S)is never planar.
文摘The movement of interacting faults within the Earth’s crust during earthquakes may cause significant structural damage.Large earthquake fault surfaces are often planar or a combination of several planar fault segments.This study analyses the interaction between a non-planar and a planar fault,where the faults are inclined,buried,creeping and strike-slip in nature.The non-planar fault is infinite and formed by two interconnected planar segments,while the planar fault is finite.The present analysis adduces the movement of interacting faults in a composite structure comprised of an elastic layer nested on a visco-elastic substrate of Maxwell medium.The significant effect of various affecting parameters viz.inclination of the faults,velocity of the fault movement,depth of the faults from the free surface,distance between the faults and the non-planarity of the fault has been discussed and also compared.The amount of stress and surface shear strain is restored after the creeping movement.The graphical representation of the effect of non-planarity of the fault on stress-strain accumulation has been established.Analytical solutions are obtained using Laplace transform and Green’s function techniques,supported by numerical simulations.The obtained results provide insights into fault interaction process and have important implications for assessing seismic hazard potential in viscoelastic media.The study of such earthquake fault dynamical models may give some ideas about the nature of stress-strain accumulation or release in the system and help us to observe the mechanism of lithosphere-asthenosphere boundary.
基金supported financially by the National Key R&D Program of China(grant no.2022YFE0130600)the National Natural Science Foundation of China(grant nos.22075001 and 92156019)+2 种基金the King Abdullah University of Science and Technology(KAUST)Competitive Research Grants under award no.ORA-CRG10-2021-4668support from the KAUST Office of Sponsored Research under award no.OSA-CRG2021-4668supported by the High-performance Computing Platform of Peking University.
文摘To date,extensive efforts have been devoted to designing new conjugated polymers with long alkyl or ethylene glycol sidechains.However,these sidechains are insulators,limiting further performance enhancement in doped conjugated polymers.Moreover,the most widely used chlorinated solvents are toxic,limiting the practical applications of many conjugated polymers.Here,we report a water/alcohol processable n-type conjugated polymer P(Py2FT),featuring side chain-free cationic backbones.P(Py2FT)exhibits a high n-type electrical conductivity of up to 28.1 S cm^(−1)and a high thermoelectric power factor of up to 28.7μWm^(−1)K^(−2),comparable to some conventional n-type conjugated polymers reported recently.More importantly,cationic polymers display tight molecular packings and interesting enhanced backbone planarity after n-doping,which,we envision,provides a new research direction to address the sidechain issue in conventional conjugated polymers.Our work demonstrates that sidechain-free cationic polymers have great potential for green-solvent-processed heavily doped organic electronics.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52130309 and 51903014)Beijing Natural Science Foundation(No.2202043)Changzhou Sci&Tech Program(No.CJ20210041).
文摘Self-assembly of dyes has become a flexible strategy to modulate their photophysical properties.H-aggregates show great potential to increase heat generation,while the precise designing of H-aggregates as efficient photothermal agents is still challenging.Herein,a quinoline cyanine(QCy)is developed for constructing stable H-aggregated nanoparticles(NPs)to significantly enhance photostability and photothermal conversion efficiency(PCE).With symmetrical rigid planar quinoline structures,QCy has a small and symmetrical dihedral angle(11.9°),which ensures excellent molecular planarity.In aqueous solution,the planar QCy can form closeπ–πmolecular stacking,and fast self-assemble into stable H-aggregates even at low concentrations(1×10−7 M).QCy H-aggregates are sphere-like NPs(QCy NPs)with an average diameter of 120 nm and exhibit high stability.H-aggregation of QCy significantly enhances PCE from 20.1%(non-H-aggregated QCy)to 63.8%(QCy NPs).In addition,the positive charge of quaternarized quinoline provides mitochondrial anchoring ability,which further enhances the photothermal effect.With high PCE and tumor accumulation,QCy NPs in low-doses have been successfully used in photoacoustic imaging-guided tumor photothermal therapy.
基金Project supported by the National Major Science and Technology Special Project of China(No.2008ZX01035-001-08)
文摘With the use of a chemical-mechanical polishing (CMP) simulator verified by testing data from a foundry, the effect of dummy fill characteristics, such as fill size, fill density and fill shape, on CMP planarity is analyzed. The results indicate that dummy density has a significant impact on oxide erosion, and copper dishing is in proportion to dummy size. We also demonstrate that cross shape dummy fill can have the best dishing performance at the same density.
基金Supported by the National Natural Science Foundation of China(Grant No.12271210)the Scientific Research Foundation of Jimei University(Grant No.Q202201).
文摘A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in all t-tone colorings of that graph.In this article,we study t-tone coloring of some finite planar lattices and obtain exact formulas for their t-tone chromatic number.
基金supported by the National Scientific Foundation of China Nos.11431010 and 11571329“the Fundamental Research Funds for the Central Universities.”。
文摘We give a combinatorial characterization of upward planar graphs in terms of upward planar orders,which are special linear extensions of edge posets.
基金supports from the National Key Research and Development Program of China(2023YFB2806803)the National Natural Science Foundation of China(62075127).
文摘Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.
基金Supported by the Fundamental Research Funds for the Central Universities(ZYGX2021J008)。
文摘A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.
文摘A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d.It was known that planar graphs are 5-degenerate and every planar graph without k-cycles for some prescribed k∈{3,5,6}is 3-degenerate.In this paper,we show that if G is a planar graph without kites and 9-or 10-cycles,then G is 3-degenerate,hence 4-choosable and list vertex 2-arborable.
基金Partially supported by NSFC(No.12301436)NSF of Guangxi Province(No.2025GXNSFAA069811)。
文摘DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improves the results of[Discrete Math.,2018,341(7):1983–1986]and[Discrete Appl.Math.,2020,277:245–251].
文摘In this paper,by using the method of Lyapunov-Schmidt reduction,we obtain the existence of multi-bump solutions for planar Schrödinger-Poisson system.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金Supported by the National Key Research and Development Program of China(2021YFB2800201)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)。
文摘A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.
基金supported by the start-up funding of CQNU (Grant No. 24XLB010)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202100514)+3 种基金funding from Chongqing Natural Science Foundation under Grant No. CSTB2022NSCQ-JQX0018the Fundamental Research Funds for the Central Universities Grant No. 2021CDJZYJH-003Xiaomi Foundation/Xiaomi Young Talents Programfunding from the National Science Foundation of China under Grant Nos. 12404169, 12147172, 12274046, 11874094, 12147102, and 12347101。
文摘The quantum phase transition between Z_(2) plaquette valence bound solid(PVBS) and superfluid(SF) phases on the planar pyrochlore lattice(square ice) is under debate. To gain further insight, here, we focus on the dynamical features of the hard-core Bose–Hubbard model on this lattice and study the excitation spectra by combining stochastic analytic continuation and quantum Monte Carlo simulation. In both PVBS and SF phases,a flat band with bow-tie structure is observed and can be explained by certain symmetries. At the transition point,the spectra turn to be continuous and gapless. A(2+1)-dimensional Abelian–Higgs model with mixed 't Hooft anomaly is proposed to describe the transition, where the anomaly matching predicts that the deconfinement can exist on the domain walls. From the snapshot of the spin configuration in real space, we found the existence of the domain wall. We also found that the spectrum along a specific path in momentum space from PVBS phase to the transition point can be well described by an XXZ spin chain, and the critical theory of XXZ spin chain matches the anomaly. The two-spinon continuum along this specific path implies additional domain walls(point defect) can emerge in the domain walls(line defect) and take the role of deconfinement at the transition point.
基金financial support provided by Huanghuai University and Hangzhou Medical College.
文摘Planar chiral cyclophanes are a type of structurally intriguing organic molecules,which have found increasingly applications in the field of biologically active compounds,asymmetric catalysis,and optically pure materials.As such,significant efforts in the development of new methods to build up enantioenriched cyclophanes in a precise manner have attracted increased attention in recent years.Among the plethora of reported synthetic strategies,catalytic enantioselective method has emerged as one of the most straightforward and efficient ways to deliver optically pure planar chiral cyclophanes.In this review,the recent progress in catalytic enantioselective reactions for the synthesis of planar chiral cyclophanes will be discussed,which would stimulate the research interest of chemists for the discovery of novel asymmetric strategies for the preparation of valuable and previously difficult-to-access chiral molecules.
基金supported by the National Key Research and Development Program of China(No.2022YFA1203700)the National Natural Science Foundation of China(NSFC)(Nos.62405129 and 62035008)+1 种基金the University Research Project of Guangzhou Education Bureau(No.202235053)the Natural Science Foundation of Jiangsu Province(No.BK20241197).
文摘Multispectral imaging plays a crucial role in simultaneously capturing detailed spatial and spectral information,which is fundamental for understanding complex phenomena across various domains.Traditional systems face significant challenges,such as large volume,static function,and limited wavelength selectivity.Here,we propose an innovative dynamic reflective multispectral imaging system via a thermally responsive cholesteric liquid crystal based planar lens.By employing advanced photoalignment technology,the phase distribution of a lens is imprinted to the liquid crystal director.The reflection band is reversibly tuned from 450 nm to 750 nm by thermally controlling the helical pitch of the cholesteric liquid crystal,allowing selectively capturing images in different colors.This capability increases imaging versatility,showing great potential in precision agriculture for assessing crop health,noninvasive diagnostics in healthcare,and advanced remote sensing for environmental monitoring.