Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phy...Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phytoplankton and the carbon pool in these areas is crucial for assessing the role of the Southern Ocean in global carbon cycling.During the late stage of an algal bloom,seawater samples at 14 stations were collected in the Amundsen Sea Polynya(ASP)and adjacent SIZ.Using nutrients,phytoplankton pigments,organic carbon(OC),remote sensing data,and physicochemical measurements,as well as CHEMTAX model simulations,we investigated the response of the phytoplankton crops,taxonomic composition,and OC pool to environmental factors.Our analyses revealed that hydrodynamic regimes of the polynya,adjacent SIZs and open sea were regulated by the regionally varying intrusion of Circumpolar Deep Water,photosynthetically active radiation and sea ice melt water.The ASP exhibited the highest seasonal nutrient utilization rates[ΔN=(1059±386)mmol/m^(2),ΔP=(50±17)mmol/m^(2) andΔSi=(956±904)mmol/m^(2)],while the open sea had lower rates.The integrated chlorophyll a(Chl a)concentration at depths of 0–200 m ranged from 20.4 mg/m^(2) to 1420.0 mg/m^(2) and peaked in the polynya.In the study area,Haptophytes Phaeocystis antarctica was the dominant functional group(34%±27%),and diatoms acted as a secondary contributor(23%±14%).The major functional group and particulate OC(POC)contributor varied from diatoms(36%±12%)in the open sea to haptophytes(48%±31%)in the polynya waters.Strong light conditions and microelement limitations promoted the dominance of P.antarctica(low Fe forms)dominance in the ASP.The strong correlations between the POC and Chl a depth-integrated concentration suggest that the POC was primarily derived from phytoplankton,while dissolved OC(DOC)was influenced by consumer activity and water mass transport.In addition,the transport of OC in the upper 200 m of the water column within the ASP was quantified,revealing the predominantly westward fluxes for both DOC[9.0 mg/(m^(2)·s)]and POC[7.2 mg/(m^(2)·s)].The latitudinal transport exhibited the northward transport of DOC[8.1 mg/(m^(2)·s)]and southward transport of POC[4.3 mg/(m^(2)·s)]movement.These findings have significant implications for enhancing our understanding of how hydrodynamics influence OC cycling in polynya regions.展开更多
Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing...Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas.展开更多
Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially i...Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes.展开更多
To better understand the spatial variations in phytoplankton abundance and community structure and their relationship with environmental parameters in Jiaozhou Bay,Yellow Sea,in Shandong,East China,observations were c...To better understand the spatial variations in phytoplankton abundance and community structure and their relationship with environmental parameters in Jiaozhou Bay,Yellow Sea,in Shandong,East China,observations were conducted to estimate abundance of net-phytoplankton and key groups along with environmental parameters in three typical sites in seasonal survey from 2004 to 2016 in the bay.The spatial patterns of phytoplankton abundance differed obviously between the inner and the outer bay.The abundance of total phytoplankton and diatoms increased obviously in the northern part of the bay,while decreased in the southern part and outer bay.An increase in dinoflagellate abundance was obvious in the outer bay.Variations in the dynamics of phytoplankton abundance could be largely explained by the succession of chain-forming diatoms and dinoflagellates.The key chain forming diatom groups Chaetoceros and Thalassiosira increased markedly,especially in winter in the northern part of the bay,while in the southern part and the outer bay,Chaetoceros declined.Besides,the key dinoflagellate groups Ceratium and Noctiluca increased noticeably,resulting in a significant increase in the dinoflagellate/diatom ratio in the outer bay.These variations has a significant correlation with environmental variables of surface seawater temperature,phosphorus,nitrogen,salinity,and N/Si ratio(P<0.05).For the key groups,temperature was the primary driver of dinoflagellate abundance,while the N/P ratio was critical for chain-forming diatoms.The abundance of phytoplankton showed a clear spatial pattern and associated obviously with environmental factors in the marine ecosystems,offering insights into coastal ecosystem management and conservation strategies.展开更多
Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solv...Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solvents(methanol,95%methanol,dimethylformamide,and 90%acetone)and two instruments(fluorometer and high-performance liquid chromatography(HPLC)coupled with diode array detector).Analysis of chlorophyll a(Chl a)with fluorometer could lead to over-or underestimation due to the interference from its derivatives in all probability.Among the four extractants,90%acetone had a high recovery for chlorophylls.In contrast,95%methanol was a poor extractant for chlorophylls due to the degradation of Chl a,especially in diatoms.The 95%methanol,however,had high extraction efficiencies for most diagnostic xanthophylls.Therefore,the selection of pigment analytical protocols should follow the specific purpose of phytoplankton study.In addition to fluorometry,an HPLC method with 90%acetone as extractant shall be a good choice for the analysis of Chl a to estimate phytoplankton biomass,especially for diatom-dominated samples,while an HPLC method with 95%methanol as extractant be more suitable to characterize different taxa in phytoplankton communities.展开更多
Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ec...Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ecological risks,especially in eutrophicwaters.The present study was conducted by adding PAHs to four marine phytoplankton species and showed that naphthalene(Nap)and phenanthrene(Phe)induced both stimulatory and in-hibitory effects(>50%)on urea and NO_(3)−uptake by phytoplankton species.In addition,the apparent stimulative effects(>50%)for NH_(4)^(+)were also observed.Overall,38.9%of the sam-ples exhibited stimulation effects after 24 h exposure,which increased to 61.1%after 96 h exposure.This suggested the existence of a lag period,during which a tolerant cell popula-tion could adapt to PAHs.Significant positive correlations(P<0.01)between low and high concentrations of PAH individuals demonstrated that the mode of action for both pollutants on nitrogen uptake by phytoplankton was the same.Species-specific responses were also observed,with 19.0%of Thalassiosira sp.and 24.0%of Tetraselmis sp.exhibited inhibition effects greater than 50%,while 40.9%of Karlodinium veneficum and 27.3%of Rhodomonas salina demonstrated stimulation effects exceeding 50%,providing a unique perspective for exploring the harmful algal bloom of the mixotrophic K.veneficum,in addition to the original consideration of nutrients.The internal mechanisms may lie in differences in energy consumption between N-forms,exposure time and chemical concentrations,aswell as mor-phological characteristics and biochemical structures of the species,which require further investigation.展开更多
The functional diversity index of a phytoplankton body has gradually become a new mean of measuring and research.To explore the response of phytoplankton taxonomy and the functional diversity index to interannual envi...The functional diversity index of a phytoplankton body has gradually become a new mean of measuring and research.To explore the response of phytoplankton taxonomy and the functional diversity index to interannual environmental changes,a survey on the structure of the phytoplankton community and water physicochemical characteristics of the water was carried out at 28 sampling points in the Harbin section of the Songhua River for three consecutive years in every May from 2021 to 2023.The taxonomy diversity index and the functional diversity index were calculated.Firstly,The relationship between the structure of the characteristics of the community and environmental factors was explored;secondly,we reveal the responses of taxonomic and functional diversity indices to different habitats between years;finally,we explore the main environmental factors that control the taxonomic and functional diversity indices of phytoplankton.Results show that,initially,environmental factors in water changes caused by different water levels between years affected the composition of phytoplankton communities.Subsequently,by comparing the taxonomic diversity index and the functional diversity index on a time scale,we found that the taxonomic diversity index was more responsive to environmental changes.Ultimately,the main environmental factors on the phytoplankton taxonomic diversity index were dissolved oxygen,Taxonomic diversity index,and specific conductivity,and the main environmental factors that affected the functional diversity index were dissolved oxygen,turbidity,and water temperature.This study reveals the important role of the taxonomic diversity index in river water quality evaluation,obtained new information on the relative precision of the taxonomic diversity index and the functional diversity index in the evaluation of ecological health of the water,and provided a reliable tool for monitoring river water quality based on aquatic organisms.展开更多
Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow ...Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities.To clarify it,phytoplankton communities in the Zhenjiang section of the Beijing-Hangzhou Grand Canal(BHGC)in China,the world's longest canal,were studied and compared them with its undisturbed tributaries.The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC,shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn.Ship disturbances increased water turbidity and created optimal N/P ratios,which provided Cyanobacteria with a competitive advantage in autumn.The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC,exceeding that in the tributaries by more than tenfold,accompanied by a decrease in diversity to its lowest level.Due to habitat alterations,functional groups emerged that are resilient to strong disturbances and high turbidity.The findings add to the understanding of the impact of ship traffic on river ecosystems.展开更多
Understanding the response of the phytoplankton community to climate change is essential for reservoir management.We analyzed a long-term data series(2009–2020)on the phytoplankton community in a large mesotrophic re...Understanding the response of the phytoplankton community to climate change is essential for reservoir management.We analyzed a long-term data series(2009–2020)on the phytoplankton community in a large mesotrophic reservoir in the wet season to investigate the impacts of temperature and precipitation increases caused by climate change on the functioning and trait composition of the phytoplankton community.Over the last twelve years,the 3-month accumulative precipitation increased from 291.03 mm to 590.91 mm,and the surface water temperature increased from 25.06℃to 26.49℃in wet season,respectively.These changes caused a higher water level,stronger thermal stratification and lower nitrogen concentration in Daxi Reservoir.The dynamic equilibrium model indicated that the increased precipitation and water temperature-related environmental changes would result in a more diverse and productive phytoplankton community.The effects of increasing water temperature and precipitation on the niche complementarity and selection effects within the phytoplankton community were analyzed using structural equation model by means of the functional divergence index and functional evenness index,respectively,elucidating the reasons for the increase in cyanobacteria in the absence of a significant increase in nutrient levels.Based on these results,it is advisable that more stringent phosphorus control standards might be conducted to reduce the risks of cyanobacteria proliferation in the context of global warming.展开更多
The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limit...The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limitation,abundant nutrients,and rapid salinity shifts play a crucial role in shaping phytoplankton dynamics.The Qiantang River estuary-Hangzhou Bay(QRE-HZB)is a macrotidal estuary system known for its exceptionally high suspended solids concentration.To investigate the impact of TMZ on the standing crop and size structure of phytoplankton in the QRE-HZB,we conducted three cruises in dry,wet,and dry-to-wet transition seasons during 2022-2023,by assessing parameters including size fractionated chlorophyll a(chl a),turbidity,Secchi depth,temperature,salinity,nutrients,and mesozooplankton.Results reveal significant variations in the TMZ and associated environmental factors in different periods,which markedly influenced the phytoplankton chl-a concentration,size structure,and cell activity(pheophytin/chl a).The chl-a concentration was high with micro-phytoplankton predominance in wet season,while nano-phytoplankton dominated in dry season.Within the TMZ,lower chl-a concentrations and pico-chl-a contributions,alongside higher pheophytin/chl-a and micro-chl-a contributions,were observed.The Spearman’s rank correlation and generalized additive model analyses indicated strong correlations of chl-a concentrations with turbidity,nutrients,and mesozooplankton.Redundancy analysis further revealed that salinity,nutrients,and turbidity significantly regulated variations in size structure.Phytoplankton mortality within the TMZ was primarily driven by high turbidity and salinity fluctuations,reflecting the vigorous resuspension and mixing of freshwater and seawater in the QRE-HZB.These findings highlight that the standing crop and size structure of phytoplankton were strongly regulated by the TMZ and associated physicochemical factors in the macrotidal QRE-HZB.展开更多
The property of water mass plays an important role in determining the distribution of phytoplankton in the ocean.In the Yellow Sea,summer stratification constrains water exchange and differentiates the properties of t...The property of water mass plays an important role in determining the distribution of phytoplankton in the ocean.In the Yellow Sea,summer stratification constrains water exchange and differentiates the properties of the Yellow Sea Cold Water Mass(YSCWM)and surface water,which in turn affects the spatiotemporal patterns of phytoplankton communities.Here,based on four summer cruises in the Yellow Sea,we examined the response of phytoplankton pigment assemblages to three water masses,including surface water(water massⅠ,WM-Ⅰ),thermocline water(WM-Ⅱ),and the YSCWM(WM-Ⅲ).Based on the opportunities for group dominance across the four cruises,Cyanophyceae,Haptophyceae,Chlorophyceae,and Cryptophyceae preferred living in WM-Ⅰ,characterized by relatively higher temperature and light intensity but lower nutrients;Bacillariophyceae,Chlorophyceae,Cyanophyceae,and Dinophyceae dominated in WM-Ⅲ,with relatively lower temperature and light intensity but higher nutrients.In comparison,the highest diversity of the dominant pigment groups was observed in WM-Ⅱ with intermediate temperature,light,and nutrient levels.The Dirichlet regression model identified the key environmental factors driving changes in phytoplankton assemblages in WM-Ⅰ,Ⅱ,and Ⅲ as dissolved inorganic phosphate(DIP),DIP and light,and temperature and ammonium,respectively.Under the impact of global environmental change,the fluctuations of key driving forces and their potential ecological implications need further investigation.展开更多
Water level fluctuations(WLFs)constituted a dominant factor controlling the structure and function of freshwater ecosystems but the mechanism of WLFs on phytoplankton community structure was still unknown.We investiga...Water level fluctuations(WLFs)constituted a dominant factor controlling the structure and function of freshwater ecosystems but the mechanism of WLFs on phytoplankton community structure was still unknown.We investigated the characteristics of phytoplankton community structure in Xiangxi Bay from January 2017 to December 2020.Results indicated water level(WL)of the Three Gorges Reservoir was divided into four distinct stages:the decreasing stage(DS),the low water level stage(LS),the storage stage(SS),and the high water level stage(HS).Notably,Cyanophyta predominated during the LS,with Microcystis sp.being the dominant species.Bacillariophyta was predominant in other three WL stages,with Melosira sp.and Cyclotella sp.as the dominant species.The highest biomass appeared in LS,whereas the lowest appeared in HS.Moreover,alpha diversity appeared to be lower in both HS and LS compared to DS and SS.Redundancy analysis showed WL as the key driver of phytoplankton community.Partial least squares path model analyses demonstrated that WL not only altered chemical factors(path coefficient=-0.62,P<0.01),thereby leading to changes in phytoplankton biomass(path coefficient=0.56,P<0.01),but also changed the physical factors(path coefficient=-0.69,P<0.01)and consequently had an impact on phytoplankton biomass(path coefficient=0.33,P<0.01).Furthermore,WL influenced phytoplankton diversity by altering chemical and physical factors.In conclusion,WL was an important factor influencing phytoplankton community,which implied that reservoir operation was the potential strategy to regulate phytoplankton communities.展开更多
The Changjiang River Estuary(CRE) and its offshore plumes host a diverse phytoplankton community;however, the spatiotemporal dynamics of these microorganisms and their environmental drivers remain poorly understood. T...The Changjiang River Estuary(CRE) and its offshore plumes host a diverse phytoplankton community;however, the spatiotemporal dynamics of these microorganisms and their environmental drivers remain poorly understood. This study aims to elucidate the spatiotemporal variations and environmental heterogeneity of phytoplankton communities in the CRE, as well as to understand the factors driving their assemblage. Utilizing ecological survey data collected from the CRE and adjacent waters during spring and summer from 2018 to 2020, we conducted a spatiotemporal analysis of phytoplankton β-diversity in the region. We decomposed β-diversity into species contributions to β-diversity(SCBD)and local contributions to β-diversity(LCBD) to examine spatial differences in phytoplankton diversity and the contributions of individual species within the community. Our findings reveal that spatial differences, primarily driven by water salinity and distance from the coastline, are key factors influencing the heterogeneity of phytoplankton community composition. Key species such as Skeletonema costatum, Melosira granulata, and M. granulata var.angustissima significantly affected β-diversity. Further, β-diversity decomposition reveals that community assembly is driven by interactive biogeochemical forces: salinity gradients shape spatial heterogeneity through runoff-seawater mixing, eutrophic conditions promote the dominance of nutrient-dependent taxa, and silica availability regulates diatom-to-flagellate succession. This study provides a methodological paradigm for analyzing phytoplankton community assembly mechanisms in estuaries, thereby offering scientific support for biogeography-based ecosystem management in the CRE.展开更多
The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)dur...The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)during the 37 th China Antarctic Research Expedition(Jan.2021)(CHINARE-37)and subjected to analysis of particulate organic carbon(POC)and phytoplankton pigments.The remote sensing data,CHEMTAX community compositional modeling analysis,and physicochemical measurements were combined to explore the spatial variation of phytoplankton crops,taxonomic composition,and their environmental drivers.Historical phytoplankton community data from the area were also compared against those of this study to investigate inter-annual community differences and their potential causes.The column-integrated POC and chlorophyll-a(Chl-a)concentrations were 12.0±4.9 g/m^(2) and 73.8±50.5 mg/m^(2),respectively.The two most dominant taxa were haptophyte that are adapted to high Fe availability(Hapt-HiFe,mainly Phaeocystis antarctica)and Diatoms-A(Phaeodactylum tricornutum)that contributed to 33%±25%and 24%±14%to the total phytoplankton crops,respectively.Through cluster analysis,the study area was divided into two regions dominated by Hapt-HiFe and Diatoms-A,respectively.Spatially,Hapt-HiFe was mainly concentrated in the southwest coastal area that featured low temperatures,low salinity,and shallow euphotic zones.The coastal region southwest of the southern boundary of the Antarctic circumpolar current was experiencing a bloom of Hapt-HiFe during the study period that significantly contributed to the POC pool and Chl-a concentrations(R=0.46,P<0.01;R=0.42,P<0.01).Besides,the dominance of Hapt-HiFe in the CS suggests a high biological availability of dissolved Fe that is primarily associated with inputs from sea ice melt and upwellings.展开更多
Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a s...Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.展开更多
The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petro...The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petroleum,heavy metals,and phytoplankton community structure across seven distinct areas in LB.The results indicate relatively high concentrations of NO_(2)-N,SiO_(4)-Si,and NO_(3)-N in the Southwest Laizhou Bay(SWLB)and Huanghe River Estuary(HRE).In contrast,the East Laizhou bay(ELB)and the North of Huanghe River Estuary(NHRE)exhibit the highest concentrations of heavy metals(As,Cr and Hg).The areas with high phytoplankton density and community diversity are mainly located in the SWLB.After adjusting for basic environmental factors,phytoplankton density and Margalef richness index D are significantly associated with nutrients(NO_(3)-N,NO_(2)-N,NH_(4)-N,SiO_(4)-Si),and heavy metal(Cr)concentrations.We highlight that,in addition to Xiaoqinghe River,nutrients brought by the Mihe River in the SWLB and heavy metal(Cr)pollution in the ELB resulting from industrial and mining activities along the coast significantly influence phytoplankton growth and community structure.Therefore,it is recommended that more monitoring and management efforts be focused on these regions in the future.展开更多
To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the dow...To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the downstream were chosen as the study area,for which 22 sampling sites were designated.Sampling was conducted in September 2021,January,May,and July 2022.Phytoplankton species were identified from both quantitative samples and in-vivo observations.Phytoplankton was quantified by direct counting.Results show that there were 98 species belonging to 6 phyla and 78 genera.In addition,to clarify the niches of the dominant phytoplankton species and their interspecific association,the dominance index was calculated,and a comprehensive analysis was conducted including niche width,niche overlap value,ecological response rate,overall association,chi-square test,and the stability.The phytoplankton community exhibited characteristics of a Cyanobacteria-Chlorophyta-Diatom type community,showing higher diversity in spring and lower diversity in summer.Among 11 dominants phytoplankton species from 3 phyla,both frequency and dominance degree varied seasonally,of which Microcystis sp.was the dominant species in Spring,Autumn,and Winter.The niche widths of the dominant species ranged from 0.234 to 0.933,and were categorized into three groups.The niche overlap values of the 11 dominant species ranged from 0.359 to 0.959,exhibiting significant seasonal differences-highest in winter followed by autumn,spring,and summer in turn.The overall correlation among dominant species in all four seasons revealed a non-significant negative association,resulting in an unstable community structure.A significant portion(84.2%)of species pairs displayed positive associations,suggesting a successional pattern where Diatoms dominated while other dominant species shared resources and space.Despite this pattern,stability measurements indicated that the dominant species community remained unstable.Therefore,careful monitoring is recommended for potential water environment issues arising from abnormal proliferation of dominant species in the watershed during winter.This research built a theoretical foundation with a data support to the early warning of eutrophication and provided a reference for water resources management in similar watersheds along the eastern coast of China.展开更多
Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on...Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.展开更多
Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and ...Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and dominant taxa in the Bohai Sea(BHS)have exhibited significant shifts from the 1990s to the early 2010s in response to environmental changes,especially the change in nutrient structure.This study comprehensively investigated the variations in net-collected phytoplankton(>76μm)community structure,diversity,and environmental factors in the BHS during the late summers of 2011-2020,aiming to understand the recent trend in phytoplankton community structure and to explore the interactions between the communities and the environment.During the study period,the nutrient status in the BHS was characterized by a decrease in dissolved inorganic nitrogen(DIN)concentration,an increase in dissolved inorganic phosphorus(DIP)concentration,and a return of the nitrogen-to-phosphorus(N/P)molar ratio(hereinafter referred to as N/P ratio)to the Redfield ratio since 2016.The eutrophication index(EI)in the BHS remained stable and was generally at a low level(<1).The Dia/Dino index fluctuated but did not show an obvious trend.Overall,the eutrophication,the imbalance in nutrient ratio,and the shift in phytoplankton community structure did not continue during the study period.The increased abundance of phytoplankton was strongly associated with elevated concentrations of DIN,as well as higher N/P and nitrogen-to-silicon(N/Si)ratios,whereas the greater diversity was strongly linked to higher concentrations of DIP.Diatoms and dinoflagellates showed significant differences in their interactions with the environment,and their relative dominance was related to water column depth and stratification intensity;their impacts on the phytoplankton community diversity were also significantly different.The variations of certain dominant species,i.e.,Skeletonema costatum,Paralia sulcata,and Tripos longipes,exhibited strong links to the changes in nutrient structure in the BHS.The findings of this study contribute to understanding the regional environmental changes and provide insights into the adaptive strategies of coastal ecosystems in response to environmental shifts and fluctuations.展开更多
To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were s...To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were selected.The contents of nephelometric turbidity(NTU),total nitrogen(TN),and total phosphorus(TP)were significantly higher in rivers than that in lakes or reservoirs,whereas the pH and CODMn(chemical oxygen demand or potassium permanganate index)were lower.Results show that,27 PFGs,namely,assemblages A,B,C,D,E,F,G,H,J,K,LM,Lo,M,MP,N,P,S1,S2,T,TC,W1,W2,X1,X2,X3,XPh,and Y,were identified.Additionally,ANOSIM correlation analysis demonstrated significant differences in PFG composition between the riverine and lake-reservoir sections in the Huanghe River basin.In the riverine watersheds,the group MP was dominant,while assemblages B and J were prevalent in lakes and reservoirs.The Mantel correlation tests and RDA analysis showed that environmental variables,such as NTU,water temperature(WT),conductivity(Cond),and TP,were key driving factors of shaping the dominant PFGs of the study area.Using the Venn diagram based on variation partitioning analysis,PFGs were mainly influenced by WT and TP in lake-reservoir sites,while in the river sites were affected mainly by geo-climatic variables.This study helps understanding the PFGs in river ecosystems,and unraveling the key driving factors in different watersheds,which shall be important for the protection and management of entire Huanghe River basin.展开更多
基金The National Polar Special Program under contract Nos IRASCC 01-01-02 and IRASCC 02-02the National Natural Science Foundation of China under contract Nos 41976228,42276255,41976227,42176227,and 42076243+1 种基金the International Cooperation Key Project of the Ministry of Science and Technology under contract No.2022YFE0136500the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract Nos JG2011,JG2211,JG2013,and JG1805.
文摘Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phytoplankton and the carbon pool in these areas is crucial for assessing the role of the Southern Ocean in global carbon cycling.During the late stage of an algal bloom,seawater samples at 14 stations were collected in the Amundsen Sea Polynya(ASP)and adjacent SIZ.Using nutrients,phytoplankton pigments,organic carbon(OC),remote sensing data,and physicochemical measurements,as well as CHEMTAX model simulations,we investigated the response of the phytoplankton crops,taxonomic composition,and OC pool to environmental factors.Our analyses revealed that hydrodynamic regimes of the polynya,adjacent SIZs and open sea were regulated by the regionally varying intrusion of Circumpolar Deep Water,photosynthetically active radiation and sea ice melt water.The ASP exhibited the highest seasonal nutrient utilization rates[ΔN=(1059±386)mmol/m^(2),ΔP=(50±17)mmol/m^(2) andΔSi=(956±904)mmol/m^(2)],while the open sea had lower rates.The integrated chlorophyll a(Chl a)concentration at depths of 0–200 m ranged from 20.4 mg/m^(2) to 1420.0 mg/m^(2) and peaked in the polynya.In the study area,Haptophytes Phaeocystis antarctica was the dominant functional group(34%±27%),and diatoms acted as a secondary contributor(23%±14%).The major functional group and particulate OC(POC)contributor varied from diatoms(36%±12%)in the open sea to haptophytes(48%±31%)in the polynya waters.Strong light conditions and microelement limitations promoted the dominance of P.antarctica(low Fe forms)dominance in the ASP.The strong correlations between the POC and Chl a depth-integrated concentration suggest that the POC was primarily derived from phytoplankton,while dissolved OC(DOC)was influenced by consumer activity and water mass transport.In addition,the transport of OC in the upper 200 m of the water column within the ASP was quantified,revealing the predominantly westward fluxes for both DOC[9.0 mg/(m^(2)·s)]and POC[7.2 mg/(m^(2)·s)].The latitudinal transport exhibited the northward transport of DOC[8.1 mg/(m^(2)·s)]and southward transport of POC[4.3 mg/(m^(2)·s)]movement.These findings have significant implications for enhancing our understanding of how hydrodynamics influence OC cycling in polynya regions.
基金supported by the National Natural Science Foundation of China (No.72091511)the Science Fund for Distinguished Young Scholars of Hebei Province (No.E2022402064).
文摘Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas.
文摘Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes.
基金Supported by the Laoshan Laboratory(No.LSKJ202204005)the International Partnership Program of Chinese Academy of Sciences(No.121311KYSB20190029)+1 种基金the National Natural Science Foundation of China(Nos.U2006206,32371619)the International Partnership Program of Chinese Academy of Sciences(No.133137KYSB20200002)。
文摘To better understand the spatial variations in phytoplankton abundance and community structure and their relationship with environmental parameters in Jiaozhou Bay,Yellow Sea,in Shandong,East China,observations were conducted to estimate abundance of net-phytoplankton and key groups along with environmental parameters in three typical sites in seasonal survey from 2004 to 2016 in the bay.The spatial patterns of phytoplankton abundance differed obviously between the inner and the outer bay.The abundance of total phytoplankton and diatoms increased obviously in the northern part of the bay,while decreased in the southern part and outer bay.An increase in dinoflagellate abundance was obvious in the outer bay.Variations in the dynamics of phytoplankton abundance could be largely explained by the succession of chain-forming diatoms and dinoflagellates.The key chain forming diatom groups Chaetoceros and Thalassiosira increased markedly,especially in winter in the northern part of the bay,while in the southern part and the outer bay,Chaetoceros declined.Besides,the key dinoflagellate groups Ceratium and Noctiluca increased noticeably,resulting in a significant increase in the dinoflagellate/diatom ratio in the outer bay.These variations has a significant correlation with environmental variables of surface seawater temperature,phosphorus,nitrogen,salinity,and N/Si ratio(P<0.05).For the key groups,temperature was the primary driver of dinoflagellate abundance,while the N/P ratio was critical for chain-forming diatoms.The abundance of phytoplankton showed a clear spatial pattern and associated obviously with environmental factors in the marine ecosystems,offering insights into coastal ecosystem management and conservation strategies.
基金Supported by the Joint Project of Guangxi Provincial and China National Natural Science Foundations(Nos.U 20 A 20104,42306152)the Taishan Scholars Program to Prof.Rencheng YU。
文摘Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solvents(methanol,95%methanol,dimethylformamide,and 90%acetone)and two instruments(fluorometer and high-performance liquid chromatography(HPLC)coupled with diode array detector).Analysis of chlorophyll a(Chl a)with fluorometer could lead to over-or underestimation due to the interference from its derivatives in all probability.Among the four extractants,90%acetone had a high recovery for chlorophylls.In contrast,95%methanol was a poor extractant for chlorophylls due to the degradation of Chl a,especially in diatoms.The 95%methanol,however,had high extraction efficiencies for most diagnostic xanthophylls.Therefore,the selection of pigment analytical protocols should follow the specific purpose of phytoplankton study.In addition to fluorometry,an HPLC method with 90%acetone as extractant shall be a good choice for the analysis of Chl a to estimate phytoplankton biomass,especially for diatom-dominated samples,while an HPLC method with 95%methanol as extractant be more suitable to characterize different taxa in phytoplankton communities.
基金supported by the National Natural Science Foundation of China(No.42277404)the State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River(No.AEHKF2023004)+2 种基金the National Key Research and Development Programof China(No.2022YFC3202703)the International Collaboration Program of Chinese Academy of Sciences(Nos.SAJC202403,067GJHZ2023034MI)the Autonomous Deployment Project of Key Laboratory of Lake andWatershed Science for Water Security(No.NKL2023-KP01).
文摘Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ecological risks,especially in eutrophicwaters.The present study was conducted by adding PAHs to four marine phytoplankton species and showed that naphthalene(Nap)and phenanthrene(Phe)induced both stimulatory and in-hibitory effects(>50%)on urea and NO_(3)−uptake by phytoplankton species.In addition,the apparent stimulative effects(>50%)for NH_(4)^(+)were also observed.Overall,38.9%of the sam-ples exhibited stimulation effects after 24 h exposure,which increased to 61.1%after 96 h exposure.This suggested the existence of a lag period,during which a tolerant cell popula-tion could adapt to PAHs.Significant positive correlations(P<0.01)between low and high concentrations of PAH individuals demonstrated that the mode of action for both pollutants on nitrogen uptake by phytoplankton was the same.Species-specific responses were also observed,with 19.0%of Thalassiosira sp.and 24.0%of Tetraselmis sp.exhibited inhibition effects greater than 50%,while 40.9%of Karlodinium veneficum and 27.3%of Rhodomonas salina demonstrated stimulation effects exceeding 50%,providing a unique perspective for exploring the harmful algal bloom of the mixotrophic K.veneficum,in addition to the original consideration of nutrients.The internal mechanisms may lie in differences in energy consumption between N-forms,exposure time and chemical concentrations,aswell as mor-phological characteristics and biochemical structures of the species,which require further investigation.
基金Supported by the National Natural Science Foundation of China(No.32370215)。
文摘The functional diversity index of a phytoplankton body has gradually become a new mean of measuring and research.To explore the response of phytoplankton taxonomy and the functional diversity index to interannual environmental changes,a survey on the structure of the phytoplankton community and water physicochemical characteristics of the water was carried out at 28 sampling points in the Harbin section of the Songhua River for three consecutive years in every May from 2021 to 2023.The taxonomy diversity index and the functional diversity index were calculated.Firstly,The relationship between the structure of the characteristics of the community and environmental factors was explored;secondly,we reveal the responses of taxonomic and functional diversity indices to different habitats between years;finally,we explore the main environmental factors that control the taxonomic and functional diversity indices of phytoplankton.Results show that,initially,environmental factors in water changes caused by different water levels between years affected the composition of phytoplankton communities.Subsequently,by comparing the taxonomic diversity index and the functional diversity index on a time scale,we found that the taxonomic diversity index was more responsive to environmental changes.Ultimately,the main environmental factors on the phytoplankton taxonomic diversity index were dissolved oxygen,Taxonomic diversity index,and specific conductivity,and the main environmental factors that affected the functional diversity index were dissolved oxygen,turbidity,and water temperature.This study reveals the important role of the taxonomic diversity index in river water quality evaluation,obtained new information on the relative precision of the taxonomic diversity index and the functional diversity index in the evaluation of ecological health of the water,and provided a reliable tool for monitoring river water quality based on aquatic organisms.
基金Jiangsu Provincial Carbon-peak and Carbonneutralization Technology Innovation Project,Grant/Award Number:BK20220041National Natural Science Foundation of China,Grant/Award Numbers:42477073,42277060。
文摘Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities.To clarify it,phytoplankton communities in the Zhenjiang section of the Beijing-Hangzhou Grand Canal(BHGC)in China,the world's longest canal,were studied and compared them with its undisturbed tributaries.The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC,shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn.Ship disturbances increased water turbidity and created optimal N/P ratios,which provided Cyanobacteria with a competitive advantage in autumn.The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC,exceeding that in the tributaries by more than tenfold,accompanied by a decrease in diversity to its lowest level.Due to habitat alterations,functional groups emerged that are resilient to strong disturbances and high turbidity.The findings add to the understanding of the impact of ship traffic on river ecosystems.
基金Supported by the National Natural Science Foundation of China(Nos.U22A20616,32071573)。
文摘Understanding the response of the phytoplankton community to climate change is essential for reservoir management.We analyzed a long-term data series(2009–2020)on the phytoplankton community in a large mesotrophic reservoir in the wet season to investigate the impacts of temperature and precipitation increases caused by climate change on the functioning and trait composition of the phytoplankton community.Over the last twelve years,the 3-month accumulative precipitation increased from 291.03 mm to 590.91 mm,and the surface water temperature increased from 25.06℃to 26.49℃in wet season,respectively.These changes caused a higher water level,stronger thermal stratification and lower nitrogen concentration in Daxi Reservoir.The dynamic equilibrium model indicated that the increased precipitation and water temperature-related environmental changes would result in a more diverse and productive phytoplankton community.The effects of increasing water temperature and precipitation on the niche complementarity and selection effects within the phytoplankton community were analyzed using structural equation model by means of the functional divergence index and functional evenness index,respectively,elucidating the reasons for the increase in cyanobacteria in the absence of a significant increase in nutrient levels.Based on these results,it is advisable that more stringent phosphorus control standards might be conducted to reduce the risks of cyanobacteria proliferation in the context of global warming.
基金Supported by the National Key Research and Development Program of China(No.2021 YFC 3101702)the Key R&D Program of Zhejiang(No.2022 C 03044)+2 种基金the Scientific Research Fund of the Second Institute of Oceanography,MNR(No.JG 1521)the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(No.SOEDZZ 2202)the National Program on Global Change and Air-Sea Interaction(Phase Ⅱ)-Hypoxia and Acidification Monitoring and Warning Project in the Changjiang River estuary,and Long-term Observation and Research Plan in the Changjiang River estuary and Adjacent East China Sea(LORCE)Project(No.SZ 2001)。
文摘The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limitation,abundant nutrients,and rapid salinity shifts play a crucial role in shaping phytoplankton dynamics.The Qiantang River estuary-Hangzhou Bay(QRE-HZB)is a macrotidal estuary system known for its exceptionally high suspended solids concentration.To investigate the impact of TMZ on the standing crop and size structure of phytoplankton in the QRE-HZB,we conducted three cruises in dry,wet,and dry-to-wet transition seasons during 2022-2023,by assessing parameters including size fractionated chlorophyll a(chl a),turbidity,Secchi depth,temperature,salinity,nutrients,and mesozooplankton.Results reveal significant variations in the TMZ and associated environmental factors in different periods,which markedly influenced the phytoplankton chl-a concentration,size structure,and cell activity(pheophytin/chl a).The chl-a concentration was high with micro-phytoplankton predominance in wet season,while nano-phytoplankton dominated in dry season.Within the TMZ,lower chl-a concentrations and pico-chl-a contributions,alongside higher pheophytin/chl-a and micro-chl-a contributions,were observed.The Spearman’s rank correlation and generalized additive model analyses indicated strong correlations of chl-a concentrations with turbidity,nutrients,and mesozooplankton.Redundancy analysis further revealed that salinity,nutrients,and turbidity significantly regulated variations in size structure.Phytoplankton mortality within the TMZ was primarily driven by high turbidity and salinity fluctuations,reflecting the vigorous resuspension and mixing of freshwater and seawater in the QRE-HZB.These findings highlight that the standing crop and size structure of phytoplankton were strongly regulated by the TMZ and associated physicochemical factors in the macrotidal QRE-HZB.
基金Supported by the National Natural Science Foundation of China(No.42030402)the Program of Shanghai Subject Chief Scientist(No.23XD1401200)collected onboard of R/Vs Dongfanghong 2 and Lanhai 101 implementing the open research cruises(Cruise Nos.NORC 2013-01,NORC 2015-01,NORC 2018-01,NORC 2021-01)supported by NSFC Shiptime Sharing Project(Nos.41249901,41449901,41749901,42049901)。
文摘The property of water mass plays an important role in determining the distribution of phytoplankton in the ocean.In the Yellow Sea,summer stratification constrains water exchange and differentiates the properties of the Yellow Sea Cold Water Mass(YSCWM)and surface water,which in turn affects the spatiotemporal patterns of phytoplankton communities.Here,based on four summer cruises in the Yellow Sea,we examined the response of phytoplankton pigment assemblages to three water masses,including surface water(water massⅠ,WM-Ⅰ),thermocline water(WM-Ⅱ),and the YSCWM(WM-Ⅲ).Based on the opportunities for group dominance across the four cruises,Cyanophyceae,Haptophyceae,Chlorophyceae,and Cryptophyceae preferred living in WM-Ⅰ,characterized by relatively higher temperature and light intensity but lower nutrients;Bacillariophyceae,Chlorophyceae,Cyanophyceae,and Dinophyceae dominated in WM-Ⅲ,with relatively lower temperature and light intensity but higher nutrients.In comparison,the highest diversity of the dominant pigment groups was observed in WM-Ⅱ with intermediate temperature,light,and nutrient levels.The Dirichlet regression model identified the key environmental factors driving changes in phytoplankton assemblages in WM-Ⅰ,Ⅱ,and Ⅲ as dissolved inorganic phosphate(DIP),DIP and light,and temperature and ammonium,respectively.Under the impact of global environmental change,the fluctuations of key driving forces and their potential ecological implications need further investigation.
基金supported by the National Natural Science Foundation of China(No.U2040210).
文摘Water level fluctuations(WLFs)constituted a dominant factor controlling the structure and function of freshwater ecosystems but the mechanism of WLFs on phytoplankton community structure was still unknown.We investigated the characteristics of phytoplankton community structure in Xiangxi Bay from January 2017 to December 2020.Results indicated water level(WL)of the Three Gorges Reservoir was divided into four distinct stages:the decreasing stage(DS),the low water level stage(LS),the storage stage(SS),and the high water level stage(HS).Notably,Cyanophyta predominated during the LS,with Microcystis sp.being the dominant species.Bacillariophyta was predominant in other three WL stages,with Melosira sp.and Cyclotella sp.as the dominant species.The highest biomass appeared in LS,whereas the lowest appeared in HS.Moreover,alpha diversity appeared to be lower in both HS and LS compared to DS and SS.Redundancy analysis showed WL as the key driver of phytoplankton community.Partial least squares path model analyses demonstrated that WL not only altered chemical factors(path coefficient=-0.62,P<0.01),thereby leading to changes in phytoplankton biomass(path coefficient=0.56,P<0.01),but also changed the physical factors(path coefficient=-0.69,P<0.01)and consequently had an impact on phytoplankton biomass(path coefficient=0.33,P<0.01).Furthermore,WL influenced phytoplankton diversity by altering chemical and physical factors.In conclusion,WL was an important factor influencing phytoplankton community,which implied that reservoir operation was the potential strategy to regulate phytoplankton communities.
基金The program of opening ceremony to select the best candidates of the Key Laboratory of Marine Ecological Monitoring and Restoration Technologies,MNR under contract No. MEMRT2024JBGS01。
文摘The Changjiang River Estuary(CRE) and its offshore plumes host a diverse phytoplankton community;however, the spatiotemporal dynamics of these microorganisms and their environmental drivers remain poorly understood. This study aims to elucidate the spatiotemporal variations and environmental heterogeneity of phytoplankton communities in the CRE, as well as to understand the factors driving their assemblage. Utilizing ecological survey data collected from the CRE and adjacent waters during spring and summer from 2018 to 2020, we conducted a spatiotemporal analysis of phytoplankton β-diversity in the region. We decomposed β-diversity into species contributions to β-diversity(SCBD)and local contributions to β-diversity(LCBD) to examine spatial differences in phytoplankton diversity and the contributions of individual species within the community. Our findings reveal that spatial differences, primarily driven by water salinity and distance from the coastline, are key factors influencing the heterogeneity of phytoplankton community composition. Key species such as Skeletonema costatum, Melosira granulata, and M. granulata var.angustissima significantly affected β-diversity. Further, β-diversity decomposition reveals that community assembly is driven by interactive biogeochemical forces: salinity gradients shape spatial heterogeneity through runoff-seawater mixing, eutrophic conditions promote the dominance of nutrient-dependent taxa, and silica availability regulates diatom-to-flagellate succession. This study provides a methodological paradigm for analyzing phytoplankton community assembly mechanisms in estuaries, thereby offering scientific support for biogeography-based ecosystem management in the CRE.
基金Supported by the China’s National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Nos.IRASCC 01-01-02,IRASCC 02-02)the Scientific Research Fund of the Second Institute of Oceanography(Nos.JG 2011,JG 2211,JG 2013,JG 1805)+1 种基金the National Natural Science Foundation of China(Nos.42276255,41976228,41976227)the International Cooperation Key Project of Ministry of Science and Technology(No.2022 YFE 0136500)。
文摘The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)during the 37 th China Antarctic Research Expedition(Jan.2021)(CHINARE-37)and subjected to analysis of particulate organic carbon(POC)and phytoplankton pigments.The remote sensing data,CHEMTAX community compositional modeling analysis,and physicochemical measurements were combined to explore the spatial variation of phytoplankton crops,taxonomic composition,and their environmental drivers.Historical phytoplankton community data from the area were also compared against those of this study to investigate inter-annual community differences and their potential causes.The column-integrated POC and chlorophyll-a(Chl-a)concentrations were 12.0±4.9 g/m^(2) and 73.8±50.5 mg/m^(2),respectively.The two most dominant taxa were haptophyte that are adapted to high Fe availability(Hapt-HiFe,mainly Phaeocystis antarctica)and Diatoms-A(Phaeodactylum tricornutum)that contributed to 33%±25%and 24%±14%to the total phytoplankton crops,respectively.Through cluster analysis,the study area was divided into two regions dominated by Hapt-HiFe and Diatoms-A,respectively.Spatially,Hapt-HiFe was mainly concentrated in the southwest coastal area that featured low temperatures,low salinity,and shallow euphotic zones.The coastal region southwest of the southern boundary of the Antarctic circumpolar current was experiencing a bloom of Hapt-HiFe during the study period that significantly contributed to the POC pool and Chl-a concentrations(R=0.46,P<0.01;R=0.42,P<0.01).Besides,the dominance of Hapt-HiFe in the CS suggests a high biological availability of dissolved Fe that is primarily associated with inputs from sea ice melt and upwellings.
基金Supported by the National Natural Science Foundation of China(Nos.U22A20616,32071573)。
文摘Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.
基金the National Natural Science Foundation of China(Nos.42176234 and 42130403)the Chinese Arctic and Antarctic Creative Program(No.JDXT2018-01)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402).
文摘The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petroleum,heavy metals,and phytoplankton community structure across seven distinct areas in LB.The results indicate relatively high concentrations of NO_(2)-N,SiO_(4)-Si,and NO_(3)-N in the Southwest Laizhou Bay(SWLB)and Huanghe River Estuary(HRE).In contrast,the East Laizhou bay(ELB)and the North of Huanghe River Estuary(NHRE)exhibit the highest concentrations of heavy metals(As,Cr and Hg).The areas with high phytoplankton density and community diversity are mainly located in the SWLB.After adjusting for basic environmental factors,phytoplankton density and Margalef richness index D are significantly associated with nutrients(NO_(3)-N,NO_(2)-N,NH_(4)-N,SiO_(4)-Si),and heavy metal(Cr)concentrations.We highlight that,in addition to Xiaoqinghe River,nutrients brought by the Mihe River in the SWLB and heavy metal(Cr)pollution in the ELB resulting from industrial and mining activities along the coast significantly influence phytoplankton growth and community structure.Therefore,it is recommended that more monitoring and management efforts be focused on these regions in the future.
基金Supported by the National Key Scientific Research Project(No.2018YFC1508200)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX 23_0714)+1 种基金the China Scholarship Council(No.202206710066)the Construction Project of Wenzhou Hydrology High quality Development Pilot Zone(No.WZSW-GZLFZXXQ-202105)。
文摘To investigate the dominant species and interspecific association in the phytoplankton community of the Feiyun River basin in Zhejiang Province,East China,the main stream and the Shanxi Zhaoshandu Reservoir in the downstream were chosen as the study area,for which 22 sampling sites were designated.Sampling was conducted in September 2021,January,May,and July 2022.Phytoplankton species were identified from both quantitative samples and in-vivo observations.Phytoplankton was quantified by direct counting.Results show that there were 98 species belonging to 6 phyla and 78 genera.In addition,to clarify the niches of the dominant phytoplankton species and their interspecific association,the dominance index was calculated,and a comprehensive analysis was conducted including niche width,niche overlap value,ecological response rate,overall association,chi-square test,and the stability.The phytoplankton community exhibited characteristics of a Cyanobacteria-Chlorophyta-Diatom type community,showing higher diversity in spring and lower diversity in summer.Among 11 dominants phytoplankton species from 3 phyla,both frequency and dominance degree varied seasonally,of which Microcystis sp.was the dominant species in Spring,Autumn,and Winter.The niche widths of the dominant species ranged from 0.234 to 0.933,and were categorized into three groups.The niche overlap values of the 11 dominant species ranged from 0.359 to 0.959,exhibiting significant seasonal differences-highest in winter followed by autumn,spring,and summer in turn.The overall correlation among dominant species in all four seasons revealed a non-significant negative association,resulting in an unstable community structure.A significant portion(84.2%)of species pairs displayed positive associations,suggesting a successional pattern where Diatoms dominated while other dominant species shared resources and space.Despite this pattern,stability measurements indicated that the dominant species community remained unstable.Therefore,careful monitoring is recommended for potential water environment issues arising from abnormal proliferation of dominant species in the watershed during winter.This research built a theoretical foundation with a data support to the early warning of eutrophication and provided a reference for water resources management in similar watersheds along the eastern coast of China.
基金supported by the National Science and Technology Basic Resources Investigation Program of China(No.2018FY100206)the National Natural Science Foundation of China(Nos.31902370 and 42276099)+2 种基金the Ningbo Public Welfare Science and Technology Program(No.2022S161)the Key Program of Science and Technology Innovation in Ningbo(No.2023Z118)the National Key Research and Development Program of China(No.2018YFD0900703).
文摘Integrated multi-trophic aquaculture(IMTA)has been considered as an ecofriendly culture system providing a potential solution to environmental risks caused by intensive monoculture system.However,the impact of IMTA on phytoplankton remains unclear.In this study,the spatial and temporal variations of phytoplankton in Sanggou Bay were investigated seasonally based on 21 sampling sites covering three cultivation zones(bivalve zone,IMTA zone,and kelp zone)and one control zone(without aquatic cultivation).In total,128 phytoplankton species,with diatoms and dinoflagellates as the dominant groups,were obtained across the whole year,and the mean Shannon diversity index(H')and species richness(SR)were determined as 1.39 and 9.39,respectively.The maximum chlorophyll a(Chl-a)(6.32μg L^(-1))and plankton diversity(H'of 1.97)occurred in summer and autumn,respectively.Compared to other zones,the bivalve zone displayed significantly higher Chl-a and lower H'in majority of time.Pairwise PERMANOVA analysis indicated that the phytoplankton assemblage in the bivalve zone was significantly different with the control and kelp zones,while the IMTA zone maintained close to other three zones.Based on generalized additive models,temperature,NO_(2)^(-)-N,N/P ratio,SiO_(3)^(2-)-Si,and salinity were determined as the key factors underlying Chl-a and phytoplankton diversity.Addi-tionally,the results of redundancy analysis further indicated that the phytoplankton assemblage in the bivalve zone is positively re-lated with nutrients such as NO_(3)^(-)-N and NH_(4)^(+)-N as well as water depth,while the phytoplankton assemblages in the kelp,control,and IMTA zones are associated with NO_(2)^(-)-N,SiO_(3)^(2-)-Si,and salinity.Taken all observations into consideration together,it can be inferred that IMTA can effectively reduce Chl-a level compared to bivalve monoculture by reducing the nutrients.However,the SR,H’,and species composition of phytoplankton are primarily determined by local environment factors such as temperature,water depth,salinity and SiO_(3)^(2-)-Si.
基金The National Natural Science Foundation of China under contract No.42206161the Natural Science Foundation of Hebei Province under contract No.D2022407004+1 种基金the Science Research Project of Hebei Education Department under contract No.QN2022167the Open Fund Project of Hebei Key Laboratory of Ocean Dynamics,Resources and Environments under contract No.HBHY04.
文摘Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and dominant taxa in the Bohai Sea(BHS)have exhibited significant shifts from the 1990s to the early 2010s in response to environmental changes,especially the change in nutrient structure.This study comprehensively investigated the variations in net-collected phytoplankton(>76μm)community structure,diversity,and environmental factors in the BHS during the late summers of 2011-2020,aiming to understand the recent trend in phytoplankton community structure and to explore the interactions between the communities and the environment.During the study period,the nutrient status in the BHS was characterized by a decrease in dissolved inorganic nitrogen(DIN)concentration,an increase in dissolved inorganic phosphorus(DIP)concentration,and a return of the nitrogen-to-phosphorus(N/P)molar ratio(hereinafter referred to as N/P ratio)to the Redfield ratio since 2016.The eutrophication index(EI)in the BHS remained stable and was generally at a low level(<1).The Dia/Dino index fluctuated but did not show an obvious trend.Overall,the eutrophication,the imbalance in nutrient ratio,and the shift in phytoplankton community structure did not continue during the study period.The increased abundance of phytoplankton was strongly associated with elevated concentrations of DIN,as well as higher N/P and nitrogen-to-silicon(N/Si)ratios,whereas the greater diversity was strongly linked to higher concentrations of DIP.Diatoms and dinoflagellates showed significant differences in their interactions with the environment,and their relative dominance was related to water column depth and stratification intensity;their impacts on the phytoplankton community diversity were also significantly different.The variations of certain dominant species,i.e.,Skeletonema costatum,Paralia sulcata,and Tripos longipes,exhibited strong links to the changes in nutrient structure in the BHS.The findings of this study contribute to understanding the regional environmental changes and provide insights into the adaptive strategies of coastal ecosystems in response to environmental shifts and fluctuations.
基金Supported by the Young Backbone Teachers Project of Henan Province (No. 2020GGJS064)the Key Scientific and Technological Project of Henan Province (No. 232102321056)+1 种基金the Scientific Fund of Henan Normal University (No. 2020QK02)the Project of Huanghe River Fisheries Resources and Environment Investigation from the MARA,China,and the Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province
文摘To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were selected.The contents of nephelometric turbidity(NTU),total nitrogen(TN),and total phosphorus(TP)were significantly higher in rivers than that in lakes or reservoirs,whereas the pH and CODMn(chemical oxygen demand or potassium permanganate index)were lower.Results show that,27 PFGs,namely,assemblages A,B,C,D,E,F,G,H,J,K,LM,Lo,M,MP,N,P,S1,S2,T,TC,W1,W2,X1,X2,X3,XPh,and Y,were identified.Additionally,ANOSIM correlation analysis demonstrated significant differences in PFG composition between the riverine and lake-reservoir sections in the Huanghe River basin.In the riverine watersheds,the group MP was dominant,while assemblages B and J were prevalent in lakes and reservoirs.The Mantel correlation tests and RDA analysis showed that environmental variables,such as NTU,water temperature(WT),conductivity(Cond),and TP,were key driving factors of shaping the dominant PFGs of the study area.Using the Venn diagram based on variation partitioning analysis,PFGs were mainly influenced by WT and TP in lake-reservoir sites,while in the river sites were affected mainly by geo-climatic variables.This study helps understanding the PFGs in river ecosystems,and unraveling the key driving factors in different watersheds,which shall be important for the protection and management of entire Huanghe River basin.