Objective:To evaluate the effectiveness of surgical combination with traditional Chinese medicine dialectical therapy in three phases for the treatment of intertrochanteric fracture of the femur(IFF).Methods:84 patien...Objective:To evaluate the effectiveness of surgical combination with traditional Chinese medicine dialectical therapy in three phases for the treatment of intertrochanteric fracture of the femur(IFF).Methods:84 patients with IFF admitted to the hospital from December 2022 to December 2024 were selected and randomly divided into two groups using a random number table.The combined group received surgery and traditional Chinese medicine dialectical therapy in three phases,while the control group received surgery alone.The total effective rate,fracture healing time,hip function score,and lower extremity function score were compared between the two groups.Results:The total effective rate was higher in the combined group than in the control group(P<0.05).After treatment,the fracture healing time was shorter in the combined group than in the control group,and the hip function and lower extremity function scores were higher in the combined group than in the control group(P<0.05).Conclusion:Surgical combination with traditional Chinese medicine dialectical therapy in three phases can shorten the fracture healing time of IFF patients and restore their hip and lower extremity function,demonstrating significant efficacy.展开更多
In secondary Al-Si based alloys,microalloying with Mn and Cr can modify harmful platelet-type Alx Fey Siz intermetallic phases to less detrimentalα-Alx(Fe,Mn,Cr)_(y)Siz phase(script or polygonal morphologies).However...In secondary Al-Si based alloys,microalloying with Mn and Cr can modify harmful platelet-type Alx Fey Siz intermetallic phases to less detrimentalα-Alx(Fe,Mn,Cr)_(y)Siz phase(script or polygonal morphologies).However,theα-Alx(Fe,Mn,Cr)_(y)Siz phase morphology,phase composition and the addition of Fecorrecting elements can be influenced by solidification conditions.Therefore,this research is aimed to highlight the morphological evolution and mechanisms ofα-Alx(Fe,Mn,Cr)_(y)Si_(z)phase in a Cr added Al-9%Si-1%Fe-0.2%Cr(all weight percentage thereafter,unless otherwise stated)alloy with varying Mn concentrations(0.25%,0.5%,and 0.8%).Microstructure evolution of Fe intermetallic phases is investi-gated under different casting conditions using a wedge-shaped die,Cu-chill block and melt quenching experiments.Thermodynamic simulations have been performed using CALculation of PHAse Diagrams(CALPHAD)method and compared with the experimental results for phase composition and formation temperatures ofα-Alx(Fe,Mn,Cr)_(y)Siz phase.The results indicated that for 0.25Mn-0.2Cr addition to Al-9Si-1Fe alloy,compact morphology containing polygonal phases are formed in Cu-chill casting,while the wedge castings predominantly show a mixed structure with platelets and script type morphologies.Tensile tests revealed a higher elongation value of 6.6%for mixed structure with platelet and script phases,which is decreased to 4.2%for polygonal phases in Al-9Si-1Fe-0.2Cr-0.25Mn alloy.This study highlights the importance of solidification conditions on morphologies of Fe-intermetallic phases and the mechanical properties by comparing selected literature relevant to high pressure die-casting process.展开更多
In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematical...In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematically investigated.The results show that friction stir processing effectively refined the coarse Mg_(5)Gd phases into nanoscale second phases uniformly distributed along grain boundaries.The synergistic effect of texture weakening and second phases refinement significantly enhanced the tensile strength and elongation of the FSP-1000-120 alloy to 302.1 MPa and 18.3%,respectively,representing increases of 20.8%and 281.3%compared to the as-cast alloy.The as-cast alloy has a lower corrosion rate in the initial stage due to fewer micro-galvanic corrosion sites.However,the uniform distribution of the second phase in the FSP-treated(FSPed)alloy contributes to the formation of a more complete and dense corrosion product film.After 120 h of immersion,the as-cast alloy forms deep pits due to the continuous dissolution at the second phase-matrix interface,with the average corrosion rate increasing from 0.31 to 0.47 mL/cm^(2)/h.The long-term corrosion rates of FSP-1000-60,FSP-1000-120,and FSP-1200-120 samples are stable at 0.36,0.43,and 0.50 mL/cm^(2)/h,respectively.Research reveals that FSP regulates texture and second phase distribution to achieve synergistic strengthening of alloy strength plasticity,and the homogenization of second phase distribution is a key factor in improving the long-term corrosion resistance of alloys.展开更多
Laser processing of Al-Ge eutectic alloys is used to produce two different metastable intermetallic-matrix nano-scale lamellar composite microstructures:(ⅰ)β_(1)(monoclinic)Al_(6)Ge_(5)(60 vol%)-α(FCC)Al(40 vol%),a...Laser processing of Al-Ge eutectic alloys is used to produce two different metastable intermetallic-matrix nano-scale lamellar composite microstructures:(ⅰ)β_(1)(monoclinic)Al_(6)Ge_(5)(60 vol%)-α(FCC)Al(40 vol%),and(ⅱ)β_(2)(monoclinic)AIGe(67 vol%)-α(FCC)Al(33 vol%).Nanoindentation and micropillar compres-sion tests were performed to characterize mechanical behavior and compare with the equilibrium struc-ture of as-cast diamond cubic Ge(42 vol%)-FCC Al(58 vol%)micrometer-scale eutectic composite.The as-processed and deformed microstructures were characterized by scanning/transmission electron mi-croscopy.Bothβ_(1)-αandβ_(2)-αeutectics exhibit high compressive flow strengths of≈1 GPa and 1.2 GPa respectively,whereas the maximum compressive flow strength of Al-Ge eutectic is about 450 MPa.In spite of complex monoclinic structures and higher volume fraction of intermetallic phase as compared to metallic,bothβ_(1)-αandβ_(2)-αcomposite microstructures have higher level of plastic deformability than as-cast Al-Ge.The microstructure with the highest strength,β_(2)-α,also exhibits the highest plastic strain to failure attributed to a gradual strain softening behavior due to interaction of micro shear cracks with nano-twins in theβ_(2)(monoclinic)AlGe phase,whereas theβ_(1)(monoclinic)Al_(6)Ge_(5) phase without the nano-twins exhibits sudden fracture by a sharp crack.In the Al-richαphases in bothβ_(1)-αandβ_(2)-αmicrostructures,nanoscale Ge-rich clusters were observed that led to profuse stacking faults post defor-mation.Density functional theory calculations suggest that Ge solutes can lower stacking fault energy of FCC Al,thereby promoting partial dislocation glide in Al.This study highlights unusual mechanisms that impart plastic deformability at ultra-high yield strengths in intermetallic-metal composites with a low-symmetry intermetallic matrix phase.展开更多
Machine learning has rapidly become a powerful tool for addressing challenges in ultracold atomic systems;however,its application to intricate three-dimensional(3D)systems remains relatively underexplored.In this stud...Machine learning has rapidly become a powerful tool for addressing challenges in ultracold atomic systems;however,its application to intricate three-dimensional(3D)systems remains relatively underexplored.In this study,we introduce a3D residual network(3D Res Net)framework based on 3D convolutional neural networks(3D CNN)to predict ground states phases in 3D dipolar spinor Bose–Einstein condensates(BECs).Our results show that the 3D Res Net framework predicts ground states with high accuracy and efficiency across a broad parameter space.To enhance phase transition predictions,we incorporate data augmentation techniques,leading to a notable improvement in the model's performance.The method is further validated in more complex scenarios,particularly when transverse magnetic fields are introduced.Compared to conventional imaginary-time evolution methods(ITEM),the 3D Res Net drastically reduces computational costs,offering a rapid and scalable solution for complex 3D multi-parameter nonlinear systems.展开更多
This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechani...This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry.展开更多
Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corr...Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corrosion behavior of the as-cast Mg−7Sn−1Zn−1Y(TZW711)alloy after solution treatment(T4)and aging treatment(T6).The results show that the T4-TZW711 alloy possesses the highest corrosion resistance in the early corrosion stage.This is because the dissolution of Mg2Sn reduces the cathodic current density and increases the charge transfer resistance(Rct).When the corrosion time is prolonged,the undissolved and clustered MgSnY phase will peel off from the T4-TZW711 alloy surface,thereby increasing the corrosion rate of the alloy.After aging treatment,the undissolved MgSnY phase is dispersed,which results in a lower localized corrosion sensitivity of T6-TZW711 alloy than that of the T4-TZW711 alloy,suggesting that the T6 treatment can enhance the corrosion resistance of Mg−7Sn−1Zn−1Y alloys.展开更多
[Objective] This study was to explore the growth characteristics and fruit quality of a new bud mutant line, 'Chuanzao Loquat'. [Method] Paraffin section technique combined with field investigation method were adopt...[Objective] This study was to explore the growth characteristics and fruit quality of a new bud mutant line, 'Chuanzao Loquat'. [Method] Paraffin section technique combined with field investigation method were adopted to conduct com- parative analysis of shoot histomorphology and phenological phases between two Io- quat varieties, 'Chuanzao Loquat' and 'Zaozhong 6'. [Result] 'Chuanzao Loquat' branched out and unfolded leaves about half to a month earlier than 'Zaozhong 6'; both the flowering and fruiting phases of 'Chuanzao Loquat' were three months earlier than a precocious variety, 'Zaozhong 6'; the proportions of epidermis, cortex parenchyma, vascular tissue and medulla were 3.7%, 14.5%, 15.9% and 65.9%, re- spectively, in spdng shoots of 'Chuanzao Loquat', and 3.1%, 42.5%, 6.9% and 47.5%, respectively, in 'Zaozhong 6'. [Conclusion] In terms of phenological phases, 'Chuanzao Loqua' is earlier than 'Zaozhong 6', a currently widely planted precocious variety, and thus is an important germplasm resource of Ioquats.展开更多
The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc...The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.展开更多
The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 9...The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 925 ℃. Below 925 ℃, the volume fraction of secondary Laves phases increases with the rise of the temperature, and its morphology changes from granular to thin-film;above 925 ℃, the volume fraction of secondary Laves phases shows an opposite trend to temperature, and its morphology changes from thin-film to granular. A detailed explanation through linear density (ρ) is provided that the influence of secondary Laves phases at the grain boundaries (GBs) on notch sensitivity depends on the coupling competition effect of their size, quantity, and morphology. Notably, the granular Laves phases are more beneficial to improving the notch sensitivity of the alloy compared with thin-film Laves phases. Granular secondary Laves phases can promote the formation of γ′ phases depletion zone to improve the ability of GBs to accommodate high strain localization, and effectively inhibit the crack initiation and propagation.展开更多
Objective To observe the efficacy of combining therapy in treatment of 90 patients with scapulohumeral periarthritis in different phases. Method Ninety patients with scapulohumeral periarthritis were treated with Fu'...Objective To observe the efficacy of combining therapy in treatment of 90 patients with scapulohumeral periarthritis in different phases. Method Ninety patients with scapulohumeral periarthritis were treated with Fu's subcutaneous needling(FSN) combined with physiotherapy in painful phase, acupotomology and massage in adhesion phase, and appropriate functional exercise in rehabilitation phase. Seven days were considered as one course of treatment, and efficacy evaluation was performed after three courses. Function evaluation of shoulder joint was made. Result The total effective rate was 100%(38/38) in acute phase, 93.5%(29/31) in adhesion phase, and 100%(21/21) in rehabilitation phase. After treatment, the range of motion(ROM) of shoulder joint, pain, muscle force, activities of daily living(ADL) and joint local morphology of the patient have been improved obviously. Conclusion Better clinical efficacy is achieved in treatment of scapulohumeral periarthritis in different phases by combining therapy centering on FSN.展开更多
1.Introduction Compared with the widely used vapor-compression refrigeration,solid-state cooling based on phase transition offers higher ef-ficiency,environmental friendliness,and smaller volume[1,2].The phase transit...1.Introduction Compared with the widely used vapor-compression refrigeration,solid-state cooling based on phase transition offers higher ef-ficiency,environmental friendliness,and smaller volume[1,2].The phase transition of solid refrigerants can be triggered by external fields,i.e.,magnetic fields[3-5],electric fields[6,7].展开更多
Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an...Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).展开更多
In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction ...In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.展开更多
The addition of Ce significantly enhances cleanliness of steel and modifies precipitation phases.However,there are differences in the effects of different alloy systems,especially its role in M54 steel is insufficient...The addition of Ce significantly enhances cleanliness of steel and modifies precipitation phases.However,there are differences in the effects of different alloy systems,especially its role in M54 steel is insufficiently understood.This study investigates the evolution of inclusions and precipitation phases in M54 steel ingots with varying Ce additions.Results indicate that the addition of Ce reduces the content of impurity elements(O and S)and transforms Mg and Al inclusions into Ce inclusions,which is due to the stronger affinity between Ce and impurity elements such as O and S.Ce inclusions serve as nucleation sites for dendrites,reducing secondary dendrite arm spacing.In addition,these inclusions and Cecontaining precipitated phase also act as nucleation sites for carbide precipitates,effectively refining their distribution by reducing growth spaces and increasing nucleation density.Notably,as Ce content increases from 0 to 0.01 wt%,the precipitation phase content decreases significantly but rises slightly with further increases in Ce content due to the formation of additional Ce-containing precipitates.By quantitatively comparing the dendrite arm spacing,cleanliness,content and size of precipitated phase,it is determined that the optimum addition amount of Ce for M54 steel is about 0.01 wt%.展开更多
Based on α→α2+γ phase transition and crystallographic orientation relationship,as well as the the-ory of grain-preferred growth under high magnetic fields,this study proposes a novel method to adjust the alignment...Based on α→α2+γ phase transition and crystallographic orientation relationship,as well as the the-ory of grain-preferred growth under high magnetic fields,this study proposes a novel method to adjust the alignment ofα2/γlamellae for TiAl alloys through two-step treatment.The first step involved the pretreatment at 1350℃(αsingle-phase region),followed by high magnetic field heat treatment at the same temperature.Results show that the fraction of α2/γ lamellar orientation with an angle<30°re-specting the magnetic field direction increases significantly to 72.74%for pretreated Ti-42.91Al-0.69Fe alloy after holding for 30 min at 1350℃ with the 10 T magnetic field,compared with the reference sample.The preferred distribution of α2/γ lamellae is attributed to the magnetic driving force generated atαgrain boundaries,which predominantly dominates the preferential growth behavior ofαgrains by influencing the grain boundary migration during the short isothermal time under the 10 T magnetic field.After holding for 5 h at 1350℃,the average grain size of Ti-42.91Al-0.69Fe alloy increases,and the grain boundaries become flatter.Consequently,the curvature driving force generated at theαgrain boundaries is mostly lower than the magnetic driving force.The direction of grain boundary migration is thus pri-marily determined by the direction of magnetic driving forces during the holding time at 1350℃ under the 10 T magnetic field.Specifically,the grain boundaries ofαgrain move towards adjacentαgrains and are swallowed up to grow as the<0001>orientation ofαgrains is normal to the magnetic field direction.Due to the unique habitus plane ofγandαphases,the α2/γ lamellar orientation is approximately par-allel to the magnetic field direction in the subsequent cooling progress.These results indicate that high magnetic field heat treatment atαsingle-phase region can adjust the alignment of α2/γ lamellae.展开更多
For chromatographic separation,the reasonable modulation of stationary phases is the key factor to achieve high separation performance.We proposed that developing MOF stationary phases through precisely modulating the...For chromatographic separation,the reasonable modulation of stationary phases is the key factor to achieve high separation performance.We proposed that developing MOF stationary phases through precisely modulating the thermodynamic interactions between MOFs and analytes is conducive to improving the separation resolution.MIL-125,MIL-125-NH_(2),MIL-143-BTB,and MIL-143-TATB were developed as stationary phases with the careful modulation of organic ligands.MIL-125-NH_(2)and MIL-143-TATB coated columns exhibited much better separation performance than their counterparts,MIL-125 and MIL-143-BTB,respectively.The investigation of the separation mechanism indicated that thermodynamic interaction,rather than kinetic diffusion,was responsible for the separation improvement.MIL-125-NH_(2)and MIL-143-TATB provided stronger and distinguishable interactions with targets than corresponding MIL-125 and MIL-143-BTB,respectively,resulting in enhanced separation performance.This work demonstrates a guide to improving the separation performance of MOF stationary phases by increasing the thermodynamic interactions between MOFs and analytes.展开更多
Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and s...Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and structural integrity.Replacing this phase with high-entropy alloys(HEAs)offers a promising approach to enhancing mechanical properties and addressing sustainability challenges.However,the complex multi-element composition of HEAs complicates conventional experimental design,making it difficult to explore the vast compositional space efficiently.Traditional trial-and-error methods are time-consuming,resource-intensive,and often ineffective in identifying optimal compositions.In contrast,artificial intelligence(AI)-driven approaches enable rapid screening and optimization of alloy compositions,significantly improving predictive accuracy and interpretability.Feature selection techniques were employed to identify key alloying elements influencing hardness,toughness,and wear resistance.To enhance model interpretability,explainable artificial intelligence(XAI)techniques—SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)—were applied to quantify the contributions of individual elements and uncover complex elemental interactions.Furthermore,a high-throughput machine learning(ML)–driven screening approach was implemented to optimize the binder phase composition,facilitating the discovery of HEAs with superiormechanical properties.Experimental validation demonstrated strong agreement between model predictions and measured performance,confirming the reliability of the ML framework.This study underscores the potential of integrating ML and XAI for data-driven materials design,providing a novel strategy for optimizing high-entropy cemented carbides.展开更多
We theoretically investigate a one-dimensional Su–Schrieffer–Heeger(SSH)model with spin–orbit coupling(SOC)and sublattice-dependent gain and loss.As the gain and loss increase,the system transitions from a parity-t...We theoretically investigate a one-dimensional Su–Schrieffer–Heeger(SSH)model with spin–orbit coupling(SOC)and sublattice-dependent gain and loss.As the gain and loss increase,the system transitions from a parity-time(PT)symmetric phase to a parity-time and anti-parity-time(PT&APT)symmetry-breaking phase,and finally to an anti-paritytime(APT)symmetric phase.Notably,when the intracell and intercell hopping,intracell and intercell SOC parameters are all equal to half the gain–loss parameter,the model exhibits a doubly degenerate exceptional point(EP).When the SOC is equal for intracell and intercell interactions,a stronger hopping mechanism within cells compared to that between cells results in an increase in SOC that transitions the Zak phase from zero to a non-quantized value,eventually arriving at one.In contrast,a reduction in the strength of intracell hopping leads the Zak phase to transition from two to a non-quantized value,eventually arriving at one.If the intracell and intercell SOC are not aligned,altering these couplings leads to a shift in the Zak phase from two to a non-quantized level,then to one,re-entering the non-quantized region,and eventually arriving at zero.We suggest a practical experimental setup for our model that can be implemented using electrical circuits.展开更多
文摘Objective:To evaluate the effectiveness of surgical combination with traditional Chinese medicine dialectical therapy in three phases for the treatment of intertrochanteric fracture of the femur(IFF).Methods:84 patients with IFF admitted to the hospital from December 2022 to December 2024 were selected and randomly divided into two groups using a random number table.The combined group received surgery and traditional Chinese medicine dialectical therapy in three phases,while the control group received surgery alone.The total effective rate,fracture healing time,hip function score,and lower extremity function score were compared between the two groups.Results:The total effective rate was higher in the combined group than in the control group(P<0.05).After treatment,the fracture healing time was shorter in the combined group than in the control group,and the hip function and lower extremity function scores were higher in the combined group than in the control group(P<0.05).Conclusion:Surgical combination with traditional Chinese medicine dialectical therapy in three phases can shorten the fracture healing time of IFF patients and restore their hip and lower extremity function,demonstrating significant efficacy.
基金supported by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Advanced Manufacturing Office Award Number DE-EE0007897。
文摘In secondary Al-Si based alloys,microalloying with Mn and Cr can modify harmful platelet-type Alx Fey Siz intermetallic phases to less detrimentalα-Alx(Fe,Mn,Cr)_(y)Siz phase(script or polygonal morphologies).However,theα-Alx(Fe,Mn,Cr)_(y)Siz phase morphology,phase composition and the addition of Fecorrecting elements can be influenced by solidification conditions.Therefore,this research is aimed to highlight the morphological evolution and mechanisms ofα-Alx(Fe,Mn,Cr)_(y)Si_(z)phase in a Cr added Al-9%Si-1%Fe-0.2%Cr(all weight percentage thereafter,unless otherwise stated)alloy with varying Mn concentrations(0.25%,0.5%,and 0.8%).Microstructure evolution of Fe intermetallic phases is investi-gated under different casting conditions using a wedge-shaped die,Cu-chill block and melt quenching experiments.Thermodynamic simulations have been performed using CALculation of PHAse Diagrams(CALPHAD)method and compared with the experimental results for phase composition and formation temperatures ofα-Alx(Fe,Mn,Cr)_(y)Siz phase.The results indicated that for 0.25Mn-0.2Cr addition to Al-9Si-1Fe alloy,compact morphology containing polygonal phases are formed in Cu-chill casting,while the wedge castings predominantly show a mixed structure with platelets and script type morphologies.Tensile tests revealed a higher elongation value of 6.6%for mixed structure with platelet and script phases,which is decreased to 4.2%for polygonal phases in Al-9Si-1Fe-0.2Cr-0.25Mn alloy.This study highlights the importance of solidification conditions on morphologies of Fe-intermetallic phases and the mechanical properties by comparing selected literature relevant to high pressure die-casting process.
基金supported by the National Natural Science Foundation of China(Nos.52201119,52371108,52203295)the Joint Fund of Henan Science and Technology R&D Plan of China(242103810056)Frontier Exploration Project of Longmen Laboratory,China(LMQYTSKT014).
文摘In this study,friction stir processing(FSP)was employed to modify the as-cast Mg-14Gd-0.6Ce-0.5Zr alloy,and the effects of texture evolution and distribution of second phases on mechanical properties were systematically investigated.The results show that friction stir processing effectively refined the coarse Mg_(5)Gd phases into nanoscale second phases uniformly distributed along grain boundaries.The synergistic effect of texture weakening and second phases refinement significantly enhanced the tensile strength and elongation of the FSP-1000-120 alloy to 302.1 MPa and 18.3%,respectively,representing increases of 20.8%and 281.3%compared to the as-cast alloy.The as-cast alloy has a lower corrosion rate in the initial stage due to fewer micro-galvanic corrosion sites.However,the uniform distribution of the second phase in the FSP-treated(FSPed)alloy contributes to the formation of a more complete and dense corrosion product film.After 120 h of immersion,the as-cast alloy forms deep pits due to the continuous dissolution at the second phase-matrix interface,with the average corrosion rate increasing from 0.31 to 0.47 mL/cm^(2)/h.The long-term corrosion rates of FSP-1000-60,FSP-1000-120,and FSP-1200-120 samples are stable at 0.36,0.43,and 0.50 mL/cm^(2)/h,respectively.Research reveals that FSP regulates texture and second phase distribution to achieve synergistic strengthening of alloy strength plasticity,and the homogenization of second phase distribution is a key factor in improving the long-term corrosion resistance of alloys.
基金funded by DOE,Office of Science,Office of Basic Energy Sciences with the grant number of DE-SC0016808.
文摘Laser processing of Al-Ge eutectic alloys is used to produce two different metastable intermetallic-matrix nano-scale lamellar composite microstructures:(ⅰ)β_(1)(monoclinic)Al_(6)Ge_(5)(60 vol%)-α(FCC)Al(40 vol%),and(ⅱ)β_(2)(monoclinic)AIGe(67 vol%)-α(FCC)Al(33 vol%).Nanoindentation and micropillar compres-sion tests were performed to characterize mechanical behavior and compare with the equilibrium struc-ture of as-cast diamond cubic Ge(42 vol%)-FCC Al(58 vol%)micrometer-scale eutectic composite.The as-processed and deformed microstructures were characterized by scanning/transmission electron mi-croscopy.Bothβ_(1)-αandβ_(2)-αeutectics exhibit high compressive flow strengths of≈1 GPa and 1.2 GPa respectively,whereas the maximum compressive flow strength of Al-Ge eutectic is about 450 MPa.In spite of complex monoclinic structures and higher volume fraction of intermetallic phase as compared to metallic,bothβ_(1)-αandβ_(2)-αcomposite microstructures have higher level of plastic deformability than as-cast Al-Ge.The microstructure with the highest strength,β_(2)-α,also exhibits the highest plastic strain to failure attributed to a gradual strain softening behavior due to interaction of micro shear cracks with nano-twins in theβ_(2)(monoclinic)AlGe phase,whereas theβ_(1)(monoclinic)Al_(6)Ge_(5) phase without the nano-twins exhibits sudden fracture by a sharp crack.In the Al-richαphases in bothβ_(1)-αandβ_(2)-αmicrostructures,nanoscale Ge-rich clusters were observed that led to profuse stacking faults post defor-mation.Density functional theory calculations suggest that Ge solutes can lower stacking fault energy of FCC Al,thereby promoting partial dislocation glide in Al.This study highlights unusual mechanisms that impart plastic deformability at ultra-high yield strengths in intermetallic-metal composites with a low-symmetry intermetallic matrix phase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904309 and 12305015)the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5528)the Natural Science Foundation of Hebei Province,China(Grant No.A2024205027)。
文摘Machine learning has rapidly become a powerful tool for addressing challenges in ultracold atomic systems;however,its application to intricate three-dimensional(3D)systems remains relatively underexplored.In this study,we introduce a3D residual network(3D Res Net)framework based on 3D convolutional neural networks(3D CNN)to predict ground states phases in 3D dipolar spinor Bose–Einstein condensates(BECs).Our results show that the 3D Res Net framework predicts ground states with high accuracy and efficiency across a broad parameter space.To enhance phase transition predictions,we incorporate data augmentation techniques,leading to a notable improvement in the model's performance.The method is further validated in more complex scenarios,particularly when transverse magnetic fields are introduced.Compared to conventional imaginary-time evolution methods(ITEM),the 3D Res Net drastically reduces computational costs,offering a rapid and scalable solution for complex 3D multi-parameter nonlinear systems.
基金support from the Natural Science Foundation of China(Nos.52104373,52074131,and 51974092)the Basic and Applied Basic Foundation of Guangdong Province(No.2020B1515120065)。
文摘This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry.
基金National Natural Science Foundation of China(Nos.52301041,52022017,52065009,52371005)Special Fund for Special Posts of Guizhou University,China(No.[2023]26)+1 种基金Science and Technology Planning Project of Guizhou Province,China(No.ZK2021269)Fundamental Research Funds for the Central Universities,China(No.DUT23YG104)。
文摘Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corrosion behavior of the as-cast Mg−7Sn−1Zn−1Y(TZW711)alloy after solution treatment(T4)and aging treatment(T6).The results show that the T4-TZW711 alloy possesses the highest corrosion resistance in the early corrosion stage.This is because the dissolution of Mg2Sn reduces the cathodic current density and increases the charge transfer resistance(Rct).When the corrosion time is prolonged,the undissolved and clustered MgSnY phase will peel off from the T4-TZW711 alloy surface,thereby increasing the corrosion rate of the alloy.After aging treatment,the undissolved MgSnY phase is dispersed,which results in a lower localized corrosion sensitivity of T6-TZW711 alloy than that of the T4-TZW711 alloy,suggesting that the T6 treatment can enhance the corrosion resistance of Mg−7Sn−1Zn−1Y alloys.
文摘[Objective] This study was to explore the growth characteristics and fruit quality of a new bud mutant line, 'Chuanzao Loquat'. [Method] Paraffin section technique combined with field investigation method were adopted to conduct com- parative analysis of shoot histomorphology and phenological phases between two Io- quat varieties, 'Chuanzao Loquat' and 'Zaozhong 6'. [Result] 'Chuanzao Loquat' branched out and unfolded leaves about half to a month earlier than 'Zaozhong 6'; both the flowering and fruiting phases of 'Chuanzao Loquat' were three months earlier than a precocious variety, 'Zaozhong 6'; the proportions of epidermis, cortex parenchyma, vascular tissue and medulla were 3.7%, 14.5%, 15.9% and 65.9%, re- spectively, in spdng shoots of 'Chuanzao Loquat', and 3.1%, 42.5%, 6.9% and 47.5%, respectively, in 'Zaozhong 6'. [Conclusion] In terms of phenological phases, 'Chuanzao Loqua' is earlier than 'Zaozhong 6', a currently widely planted precocious variety, and thus is an important germplasm resource of Ioquats.
基金Projects (50935007,51205317) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (B08040) supported by Research Fund of the 111 Project
文摘The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.
文摘The precipitation of secondary Laves phases and its effect on notch sensitivity are systematically studied in Thermo-Span alloy. The results show that the precipitation peak temperature of secondary Laves phases is 925 ℃. Below 925 ℃, the volume fraction of secondary Laves phases increases with the rise of the temperature, and its morphology changes from granular to thin-film;above 925 ℃, the volume fraction of secondary Laves phases shows an opposite trend to temperature, and its morphology changes from thin-film to granular. A detailed explanation through linear density (ρ) is provided that the influence of secondary Laves phases at the grain boundaries (GBs) on notch sensitivity depends on the coupling competition effect of their size, quantity, and morphology. Notably, the granular Laves phases are more beneficial to improving the notch sensitivity of the alloy compared with thin-film Laves phases. Granular secondary Laves phases can promote the formation of γ′ phases depletion zone to improve the ability of GBs to accommodate high strain localization, and effectively inhibit the crack initiation and propagation.
文摘Objective To observe the efficacy of combining therapy in treatment of 90 patients with scapulohumeral periarthritis in different phases. Method Ninety patients with scapulohumeral periarthritis were treated with Fu's subcutaneous needling(FSN) combined with physiotherapy in painful phase, acupotomology and massage in adhesion phase, and appropriate functional exercise in rehabilitation phase. Seven days were considered as one course of treatment, and efficacy evaluation was performed after three courses. Function evaluation of shoulder joint was made. Result The total effective rate was 100%(38/38) in acute phase, 93.5%(29/31) in adhesion phase, and 100%(21/21) in rehabilitation phase. After treatment, the range of motion(ROM) of shoulder joint, pain, muscle force, activities of daily living(ADL) and joint local morphology of the patient have been improved obviously. Conclusion Better clinical efficacy is achieved in treatment of scapulohumeral periarthritis in different phases by combining therapy centering on FSN.
基金supported by the National Natural Science Foundation of China(Nos.52371106,52371025,52171154,51871076,52071118,and 52301223)Interdisciplinary Research Foundation of HIT(No.IR2021201)+4 种基金the Natural Science Foundation of Ningbo City(No.2023J346)supported by Zhejiang Provincial Natural Science Foundation of China(No.LQ24E010004)supported by the National Science Foundation(NSF)-Earth Sciences(No.EAR-1634415)the Department of Energy(DOE)-GeoSciences(No.DE-FG02-94ER14466)supported by DOE-BES(No.DE-AC02-06CH11357).
文摘1.Introduction Compared with the widely used vapor-compression refrigeration,solid-state cooling based on phase transition offers higher ef-ficiency,environmental friendliness,and smaller volume[1,2].The phase transition of solid refrigerants can be triggered by external fields,i.e.,magnetic fields[3-5],electric fields[6,7].
文摘Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).
文摘In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.
基金Project supported by the National Natural Science Foundation of China(52374330,52325406)。
文摘The addition of Ce significantly enhances cleanliness of steel and modifies precipitation phases.However,there are differences in the effects of different alloy systems,especially its role in M54 steel is insufficiently understood.This study investigates the evolution of inclusions and precipitation phases in M54 steel ingots with varying Ce additions.Results indicate that the addition of Ce reduces the content of impurity elements(O and S)and transforms Mg and Al inclusions into Ce inclusions,which is due to the stronger affinity between Ce and impurity elements such as O and S.Ce inclusions serve as nucleation sites for dendrites,reducing secondary dendrite arm spacing.In addition,these inclusions and Cecontaining precipitated phase also act as nucleation sites for carbide precipitates,effectively refining their distribution by reducing growth spaces and increasing nucleation density.Notably,as Ce content increases from 0 to 0.01 wt%,the precipitation phase content decreases significantly but rises slightly with further increases in Ce content due to the formation of additional Ce-containing precipitates.By quantitatively comparing the dendrite arm spacing,cleanliness,content and size of precipitated phase,it is determined that the optimum addition amount of Ce for M54 steel is about 0.01 wt%.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-Ⅳ-0011-0125)ND Basic Research Funds of China(No.G2022WD)Shaanxi Province Innovation Capability Support Program(No.2023-CX-TD-47).
文摘Based on α→α2+γ phase transition and crystallographic orientation relationship,as well as the the-ory of grain-preferred growth under high magnetic fields,this study proposes a novel method to adjust the alignment ofα2/γlamellae for TiAl alloys through two-step treatment.The first step involved the pretreatment at 1350℃(αsingle-phase region),followed by high magnetic field heat treatment at the same temperature.Results show that the fraction of α2/γ lamellar orientation with an angle<30°re-specting the magnetic field direction increases significantly to 72.74%for pretreated Ti-42.91Al-0.69Fe alloy after holding for 30 min at 1350℃ with the 10 T magnetic field,compared with the reference sample.The preferred distribution of α2/γ lamellae is attributed to the magnetic driving force generated atαgrain boundaries,which predominantly dominates the preferential growth behavior ofαgrains by influencing the grain boundary migration during the short isothermal time under the 10 T magnetic field.After holding for 5 h at 1350℃,the average grain size of Ti-42.91Al-0.69Fe alloy increases,and the grain boundaries become flatter.Consequently,the curvature driving force generated at theαgrain boundaries is mostly lower than the magnetic driving force.The direction of grain boundary migration is thus pri-marily determined by the direction of magnetic driving forces during the holding time at 1350℃ under the 10 T magnetic field.Specifically,the grain boundaries ofαgrain move towards adjacentαgrains and are swallowed up to grow as the<0001>orientation ofαgrains is normal to the magnetic field direction.Due to the unique habitus plane ofγandαphases,the α2/γ lamellar orientation is approximately par-allel to the magnetic field direction in the subsequent cooling progress.These results indicate that high magnetic field heat treatment atαsingle-phase region can adjust the alignment of α2/γ lamellae.
基金supported by the National Natural Science Foundation of China(Nos.22174067,22204078,22374077,and 22474059)the Natural Science Foundation of Jiangsu Province of China(No.BK20220370)+2 种基金Jiangsu Provincial Department of Education(No.22KJB150009)Jiangsu Association for Science and Technology(No.TJ-2023-076)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘For chromatographic separation,the reasonable modulation of stationary phases is the key factor to achieve high separation performance.We proposed that developing MOF stationary phases through precisely modulating the thermodynamic interactions between MOFs and analytes is conducive to improving the separation resolution.MIL-125,MIL-125-NH_(2),MIL-143-BTB,and MIL-143-TATB were developed as stationary phases with the careful modulation of organic ligands.MIL-125-NH_(2)and MIL-143-TATB coated columns exhibited much better separation performance than their counterparts,MIL-125 and MIL-143-BTB,respectively.The investigation of the separation mechanism indicated that thermodynamic interaction,rather than kinetic diffusion,was responsible for the separation improvement.MIL-125-NH_(2)and MIL-143-TATB provided stronger and distinguishable interactions with targets than corresponding MIL-125 and MIL-143-BTB,respectively,resulting in enhanced separation performance.This work demonstrates a guide to improving the separation performance of MOF stationary phases by increasing the thermodynamic interactions between MOFs and analytes.
文摘Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and structural integrity.Replacing this phase with high-entropy alloys(HEAs)offers a promising approach to enhancing mechanical properties and addressing sustainability challenges.However,the complex multi-element composition of HEAs complicates conventional experimental design,making it difficult to explore the vast compositional space efficiently.Traditional trial-and-error methods are time-consuming,resource-intensive,and often ineffective in identifying optimal compositions.In contrast,artificial intelligence(AI)-driven approaches enable rapid screening and optimization of alloy compositions,significantly improving predictive accuracy and interpretability.Feature selection techniques were employed to identify key alloying elements influencing hardness,toughness,and wear resistance.To enhance model interpretability,explainable artificial intelligence(XAI)techniques—SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)—were applied to quantify the contributions of individual elements and uncover complex elemental interactions.Furthermore,a high-throughput machine learning(ML)–driven screening approach was implemented to optimize the binder phase composition,facilitating the discovery of HEAs with superiormechanical properties.Experimental validation demonstrated strong agreement between model predictions and measured performance,confirming the reliability of the ML framework.This study underscores the potential of integrating ML and XAI for data-driven materials design,providing a novel strategy for optimizing high-entropy cemented carbides.
基金Project supported by the Natural Science Foundation of Chongqing,China(Grant No.CSTB2024NSCQ-MSX0736)Science and Technology Innovation Key R&D Program of Chongqing(Grant No.CSTB2024TIAD-STX0035)the Research Foundation of Institute for Advanced Sciences of CQUPT(Grant No.E011A2022328)。
文摘We theoretically investigate a one-dimensional Su–Schrieffer–Heeger(SSH)model with spin–orbit coupling(SOC)and sublattice-dependent gain and loss.As the gain and loss increase,the system transitions from a parity-time(PT)symmetric phase to a parity-time and anti-parity-time(PT&APT)symmetry-breaking phase,and finally to an anti-paritytime(APT)symmetric phase.Notably,when the intracell and intercell hopping,intracell and intercell SOC parameters are all equal to half the gain–loss parameter,the model exhibits a doubly degenerate exceptional point(EP).When the SOC is equal for intracell and intercell interactions,a stronger hopping mechanism within cells compared to that between cells results in an increase in SOC that transitions the Zak phase from zero to a non-quantized value,eventually arriving at one.In contrast,a reduction in the strength of intracell hopping leads the Zak phase to transition from two to a non-quantized value,eventually arriving at one.If the intracell and intercell SOC are not aligned,altering these couplings leads to a shift in the Zak phase from two to a non-quantized level,then to one,re-entering the non-quantized region,and eventually arriving at zero.We suggest a practical experimental setup for our model that can be implemented using electrical circuits.