Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to ...Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role.Methods Initially,we assessed PES1 expression patterns in two distinct senescence models:replicative senescent mouse embryonic fibroblasts(MEFs)and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells.Subsequently,PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types.Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays,respectively.The expression of senescence-associated proteins(p53,p21,and Rb)and SASP factors(IL-6,IL-1β,and IL-8)were analyzed by Western blot or qPCR.Furthermore,Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology.Results PES1 expression was significantly downregulated in senescent MEFs and HepG2 cells.PES1 knockdown resulted in decreased EdU-positive cells and increased SA-β-gal-positive cells,indicating proliferation inhibition and senescence induction.Mechanistically,PES1 suppression activated the p53-p21 pathway without affecting Rb expression,while upregulating IL-6,IL-1β,and IL-8 production.Notably,PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress,as evidenced by aberrant nucleolar morphology.Conclusion Our findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent(but Rb-independent)cellular senescence,highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.展开更多
Ultrafiltration membranes were prepared using phenolphthalein polyarylethersulfone (PES-C),polyethersulfone (PES) and poly(phthalazinone ether sulfone ketone) (PPESK) as polymers and NMP,DMAc,DMF and DMSO as solvents ...Ultrafiltration membranes were prepared using phenolphthalein polyarylethersulfone (PES-C),polyethersulfone (PES) and poly(phthalazinone ether sulfone ketone) (PPESK) as polymers and NMP,DMAc,DMF and DMSO as solvents by immersion precipitation via phase inversion.Experimental data of thermodynamic properties of the polymer solutions and kinetic process of membrane formation were reported.For polymer solutions with good solvents,the sequence of the viscous flow activation energy (E_η) was coincident with tha...展开更多
文摘Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role.Methods Initially,we assessed PES1 expression patterns in two distinct senescence models:replicative senescent mouse embryonic fibroblasts(MEFs)and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells.Subsequently,PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types.Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays,respectively.The expression of senescence-associated proteins(p53,p21,and Rb)and SASP factors(IL-6,IL-1β,and IL-8)were analyzed by Western blot or qPCR.Furthermore,Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology.Results PES1 expression was significantly downregulated in senescent MEFs and HepG2 cells.PES1 knockdown resulted in decreased EdU-positive cells and increased SA-β-gal-positive cells,indicating proliferation inhibition and senescence induction.Mechanistically,PES1 suppression activated the p53-p21 pathway without affecting Rb expression,while upregulating IL-6,IL-1β,and IL-8 production.Notably,PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress,as evidenced by aberrant nucleolar morphology.Conclusion Our findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent(but Rb-independent)cellular senescence,highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
基金supported by the Major State Basic Research Program of China (No.2009CB623404)National Natural Science Foundation of China (Nos.20736003,20676067)+1 种基金National High Technology Research and Development Program of China (No.2007AA06Z317)Foundation of Ministry of Education of China (No.20070003130).
文摘Ultrafiltration membranes were prepared using phenolphthalein polyarylethersulfone (PES-C),polyethersulfone (PES) and poly(phthalazinone ether sulfone ketone) (PPESK) as polymers and NMP,DMAc,DMF and DMSO as solvents by immersion precipitation via phase inversion.Experimental data of thermodynamic properties of the polymer solutions and kinetic process of membrane formation were reported.For polymer solutions with good solvents,the sequence of the viscous flow activation energy (E_η) was coincident with tha...