In order to effectively control the random tasks submitted and executed in grid workflow,a grid workflow model based on hybrid petri-net is presented. This model is composed of random petri-net,colored petri-net and g...In order to effectively control the random tasks submitted and executed in grid workflow,a grid workflow model based on hybrid petri-net is presented. This model is composed of random petri-net,colored petri-net and general petri-net. Therein random petri-net declares the relationship between the number of grid users' random tasks and the size of service window and computes the server intensity of grid system. Colored petri-net sets different color for places with grid services and provides the valid interfaces for grid resource allocation and task scheduling. The experiment indicated that the model presented in this letter could compute the valve between the number of users' random tasks and the size of grid service window in grid workflow management system.展开更多
Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a key point is to locate those activities that own bigger resource occupation probabilities with r...Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a key point is to locate those activities that own bigger resource occupation probabilities with respect to average execution time, called delayed activities, and then improve them. To this end, we firstly propose an approach to locating delayed activities in software processes. Furthermore, we present a case study, which exhibits the high-level efficiency of the approach, to concretely illustrate this new solution. Some beneficial analysis and reasonable modification are developed in the end.展开更多
The formal modeling and verification of aircraft takeoff is a challenge because it is a complex safety-critical operation.The task of aircraft takeoff is distributed amongst various computer-based controllers,however,...The formal modeling and verification of aircraft takeoff is a challenge because it is a complex safety-critical operation.The task of aircraft takeoff is distributed amongst various computer-based controllers,however,with the growing malicious threats a secure communication between aircraft and controllers becomes highly important.This research serves as a starting point for integration of BB84 quantum protocol with petri nets for secure modeling and verification of takeoff procedure.The integrated model combines the BB84 quantum cryptographic protocol with powerful verification tool support offered by petri nets.To model certain important properties of BB84,a new variant of petri nets coined as Quantum Nets are proposed by defining their mathematical foundations and overall system dynamics,furthermore,some important system properties are also abstractly defined.The proposed QuantumNets are then applied for modeling of aircraft takeoff process by defining three quantum nets:namely aircraft,runway controller and gate controller.For authentication between quantum nets,the use of external places and transitions is demonstrated to describe the encryptiondecryption process of qubits stream.Finally,the developed takeoff quantum network is verified through simulation offered by colored petri-net(CPN)Tools.Moreover,reachability tree(RT)analysis is also performed to have greater confidence in feasibility and correctness of the proposed aircraft takeoff model through the Quantum Nets.展开更多
基金the National Natural Science Foundation of China (No.60573141, 70271050)the Natural Science Foundation of Jiangsu Province (No.BK2005146)+3 种基金the High Technology Research Programme of Jiangsu Prov-ince (No.BG2005037, BG2005038, BG2006001)the High Technology Research Programme of Nanjing (No. 2006RZ105)the Foundation of National Laboratory for Modern Communications (No.9140C1101010603)the Key Laboratory of Information Technology Processing of Jiangsu Province (No.kjs05001, kjs0606).
文摘In order to effectively control the random tasks submitted and executed in grid workflow,a grid workflow model based on hybrid petri-net is presented. This model is composed of random petri-net,colored petri-net and general petri-net. Therein random petri-net declares the relationship between the number of grid users' random tasks and the size of service window and computes the server intensity of grid system. Colored petri-net sets different color for places with grid services and provides the valid interfaces for grid resource allocation and task scheduling. The experiment indicated that the model presented in this letter could compute the valve between the number of users' random tasks and the size of grid service window in grid workflow management system.
基金supported by National Natural Science Foundation of China(No.61462091)High-tech Industrial Development Program of Yunnan Province(No.1956,in 2012)+2 种基金New Academic Researcher Award for Doctoral Candidates of Yunnan Province of China(No.ynu201414)Natural Science Youth Foundation of Yunnan Province of China(No.2014FD006)the Postgraduates Science Foundation of Yunnan University(No.ynuy201424)
文摘Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a key point is to locate those activities that own bigger resource occupation probabilities with respect to average execution time, called delayed activities, and then improve them. To this end, we firstly propose an approach to locating delayed activities in software processes. Furthermore, we present a case study, which exhibits the high-level efficiency of the approach, to concretely illustrate this new solution. Some beneficial analysis and reasonable modification are developed in the end.
文摘The formal modeling and verification of aircraft takeoff is a challenge because it is a complex safety-critical operation.The task of aircraft takeoff is distributed amongst various computer-based controllers,however,with the growing malicious threats a secure communication between aircraft and controllers becomes highly important.This research serves as a starting point for integration of BB84 quantum protocol with petri nets for secure modeling and verification of takeoff procedure.The integrated model combines the BB84 quantum cryptographic protocol with powerful verification tool support offered by petri nets.To model certain important properties of BB84,a new variant of petri nets coined as Quantum Nets are proposed by defining their mathematical foundations and overall system dynamics,furthermore,some important system properties are also abstractly defined.The proposed QuantumNets are then applied for modeling of aircraft takeoff process by defining three quantum nets:namely aircraft,runway controller and gate controller.For authentication between quantum nets,the use of external places and transitions is demonstrated to describe the encryptiondecryption process of qubits stream.Finally,the developed takeoff quantum network is verified through simulation offered by colored petri-net(CPN)Tools.Moreover,reachability tree(RT)analysis is also performed to have greater confidence in feasibility and correctness of the proposed aircraft takeoff model through the Quantum Nets.