This paper applies cumulative and aggregate risk methods and weight of evidence determination to re-analysis of epidemiological and clinical studies of exposure to perchlorates. The implications of cumulative and aggr...This paper applies cumulative and aggregate risk methods and weight of evidence determination to re-analysis of epidemiological and clinical studies of exposure to perchlorates. The implications of cumulative and aggregate risk are considered for 28 epidemiological studies on IUI, serum thyroid hormone levels and clinical indicators. Consideration is given to simultaneous exposures to perchlorates, nitrates, thiocyanates and organohalogens in the study populations. The elevation of effects by perchlorates alone is found only in the studies that use urinary perchlorate as the metric of exposure. These studies are beset by a problem with use of urinary perchlorate concentration in that there is large inter-subject variability in the relationship between intake and urinary concentration due to differences in metabolism and disposition of the compounds following ingestion. As a result, an individual placed into the “high urinary concentration” group may be there due to high values of exposure, to long biological clearance halflives, or due to high transfer fractions from the serum into the urine. The influence could be removed by correcting urinary levels by measured clearance half-times for individuals in a study, but that has not been done in the case of the studies examined here. It is of interest therefore that the studies that use direct measures of intake of perchlorates rather than urine concentration fail to display the hormone effects. The current study uses a “weight of evidence” approach for perchlorates, employing all 28 studies. The result is a slope of the exposure response curve (percentage change in hormone effect per unit exposure) of 0.3% per μg/kg-day, with 95% confidence interval of (?0.05%, 1%). This confidence interval for the slope encompasses 0, indicating no statistically significant slope when all data are combined in a weight of evidence determination. This is consistent with the conclusions of the USEPA and EFSA that the epidemiological studies do not provide compelling evidence for a causal association between exposures to perchlorates and either hormone effects or clinically adverse effects. The conclusions are 1) that current epidemiological results do not provide evidence of effects induced by perchlorates apart from the IUI effects, 2) that the same results provide evidence that the IUI effects induced at environmental levels of exposure are associated with down-stream adverse effects and 3) that effective risk management requires the cumulative and aggregate risk framework adopted here, suggesting a need for risk assessors to return to the original studies and provide separate estimates of exposure response relationships for all four compounds or at the least to control for exposures to nitrates, thiocyanates and organohalogens.展开更多
The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performa...The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.展开更多
Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perch...Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.展开更多
Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobi...Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.展开更多
Several mixtures,based on urea derivatives and some inorganic oxidants,including also alumina,were studied by means of ballistic mortar techniques with TNT as the reference standard.The detonation pressure(P),detonati...Several mixtures,based on urea derivatives and some inorganic oxidants,including also alumina,were studied by means of ballistic mortar techniques with TNT as the reference standard.The detonation pressure(P),detonation velocity(D),detonation energy(Q),and volume of gaseous product at standard temperature and pressure(STP),V,were calculated using EXPLO5V6.3 thermochemical code.The performance of the mixtures studied was discussed in relation to their thermal reactivity,determined by means of differential thermal analysis(DTA).It is shown that the presence of hydrogen peroxide in the form of its complex with urea(i.e.as UHP)has a positive influence on the explosive strength of the corresponding mixtures which is linked to the hydroxy-radical formation in the mixtures during their initiation reaction.These radicals might initiate(at least partially)powdered aluminum into oxidation in the CJ plane of the detonation wave.Mixtures containing UHP and magnesium are dangerous because of potential auto-ignition.展开更多
The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were char...The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.展开更多
To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution cultu...To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.展开更多
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing...Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.展开更多
The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried ...The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.展开更多
Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine...Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.展开更多
To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of amm...To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.展开更多
Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves ...Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.展开更多
In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other ca...In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.展开更多
The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism ...The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.展开更多
Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer size...Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.展开更多
An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of vario...An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and - 100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AID) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 ℃ and leads to a drop in the high decomposition temperature of AP by 60 and 110 ℃ and a rise in the total DSC heat release by 0.86 and 1.05 kJ.g^-1, respectively.展开更多
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as e...1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.展开更多
文摘This paper applies cumulative and aggregate risk methods and weight of evidence determination to re-analysis of epidemiological and clinical studies of exposure to perchlorates. The implications of cumulative and aggregate risk are considered for 28 epidemiological studies on IUI, serum thyroid hormone levels and clinical indicators. Consideration is given to simultaneous exposures to perchlorates, nitrates, thiocyanates and organohalogens in the study populations. The elevation of effects by perchlorates alone is found only in the studies that use urinary perchlorate as the metric of exposure. These studies are beset by a problem with use of urinary perchlorate concentration in that there is large inter-subject variability in the relationship between intake and urinary concentration due to differences in metabolism and disposition of the compounds following ingestion. As a result, an individual placed into the “high urinary concentration” group may be there due to high values of exposure, to long biological clearance halflives, or due to high transfer fractions from the serum into the urine. The influence could be removed by correcting urinary levels by measured clearance half-times for individuals in a study, but that has not been done in the case of the studies examined here. It is of interest therefore that the studies that use direct measures of intake of perchlorates rather than urine concentration fail to display the hormone effects. The current study uses a “weight of evidence” approach for perchlorates, employing all 28 studies. The result is a slope of the exposure response curve (percentage change in hormone effect per unit exposure) of 0.3% per μg/kg-day, with 95% confidence interval of (?0.05%, 1%). This confidence interval for the slope encompasses 0, indicating no statistically significant slope when all data are combined in a weight of evidence determination. This is consistent with the conclusions of the USEPA and EFSA that the epidemiological studies do not provide compelling evidence for a causal association between exposures to perchlorates and either hormone effects or clinically adverse effects. The conclusions are 1) that current epidemiological results do not provide evidence of effects induced by perchlorates apart from the IUI effects, 2) that the same results provide evidence that the IUI effects induced at environmental levels of exposure are associated with down-stream adverse effects and 3) that effective risk management requires the cumulative and aggregate risk framework adopted here, suggesting a need for risk assessors to return to the original studies and provide separate estimates of exposure response relationships for all four compounds or at the least to control for exposures to nitrates, thiocyanates and organohalogens.
基金supported by the National Natural ScienceFoundation of China(Grant No.52203332)。
文摘The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.
基金supported by the Project of Chinese Manned Spaceflight(No.YYWT-0801-EXP-09)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA17010502)Jiangsu Province Ecological Environment Scientific Research Project(No.2022008).
文摘Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.
基金supported by the National Key Research and Development Program of China(2023YFC3207904).
文摘Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.
基金supported by means of the financial resources of Students Grant Projects No.SGSFCHT_2016002 of the Faculty of Chemical Technology at the University of Pardubice
文摘Several mixtures,based on urea derivatives and some inorganic oxidants,including also alumina,were studied by means of ballistic mortar techniques with TNT as the reference standard.The detonation pressure(P),detonation velocity(D),detonation energy(Q),and volume of gaseous product at standard temperature and pressure(STP),V,were calculated using EXPLO5V6.3 thermochemical code.The performance of the mixtures studied was discussed in relation to their thermal reactivity,determined by means of differential thermal analysis(DTA).It is shown that the presence of hydrogen peroxide in the form of its complex with urea(i.e.as UHP)has a positive influence on the explosive strength of the corresponding mixtures which is linked to the hydroxy-radical formation in the mixtures during their initiation reaction.These radicals might initiate(at least partially)powdered aluminum into oxidation in the CJ plane of the detonation wave.Mixtures containing UHP and magnesium are dangerous because of potential auto-ignition.
基金Supported by the National Natural Science Foundation of China (50306008, 50602024).
文摘The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.
基金Foundation item: Project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Basic Research Program of China (2006CB403301)
文摘To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
基金supported by the National Natural Science Foundation of China(No.5087816350708067)+1 种基金the National Major Project of Science&Technology Ministry of China(No.2008ZX07421-002)the Research and Development Project of Ministry of Housing and Urban-Rural Development(No.2009K7-4)
文摘Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.
文摘The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.
文摘Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.
基金supported by the National Natural Science Foundation of China (No. 50876046)
文摘To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.
文摘Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.
文摘In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.
文摘The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.
文摘Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.
基金financially supported by the National Natural Science Foundation of China (No.51676082)Qing Lan Project of Jiangsu Provincethe Innovation Experiment Program for University Students of Jiangsu (201710323075X)
文摘An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and - 100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AID) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 ℃ and leads to a drop in the high decomposition temperature of AP by 60 and 110 ℃ and a rise in the total DSC heat release by 0.86 and 1.05 kJ.g^-1, respectively.
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
基金Project(50574031) supported by the National Natural Science Foundation of China
文摘1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.