The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performa...The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.展开更多
Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perch...Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.展开更多
Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobi...Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.展开更多
The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were char...The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.展开更多
To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution cultu...To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.展开更多
Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing...Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.展开更多
The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried ...The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.展开更多
Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine...Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.展开更多
Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves ...Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.展开更多
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as e...1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.展开更多
The growth inhibition and pro-apoptosis effects of dracorhodin perchlorate on human prostate cancer PC-3 cell line were examined. After administration of 10-80 μmol/L dracorhodin perchlorate for 12-48 h, cell viabili...The growth inhibition and pro-apoptosis effects of dracorhodin perchlorate on human prostate cancer PC-3 cell line were examined. After administration of 10-80 μmol/L dracorhodin perchlorate for 12-48 h, cell viability of PC-3 cells was measured by MTT colorimetry. Cell proliferation ability was detected by colony formation assay. Cellular apoptosis was inspected by acridine orange-ethidium bromide fluorescent staining, Hoechst 33258 fluorescent staining, and flow cytometry (FCM) with annexin Ⅴ-FITC/propidium iodide dual staining. The results showed that dracorhodin perchlorate inhibited the growth of PC-3 in a dose- and time-dependent manner. IC50 of dracorhodin perchlorate on PC-3 cells at 24 h was 40.18 μmol/L. Cell clone formation rate was decreased by 86% after treatment with 20 μmol/L of dracorhodin perchlorate. Some cells presented the characteristic apoptotic changes. The cellular apoptotic rates induced by 10-40 μmol/L dracorhodin perchlorate for 24 h were 8.43% to 47.71% respectively. It was concluded that dracorhodin perchlorate significantly inhibited the growth of PC-3 cells by suppressing proliferation and inducing apoptosis of the cells.展开更多
A new energetic complex, Ni(3,4'-Hbpt)2(Hoba)2(H20)2 (3,4'-Hbpt = 3-(3-pyridyl)- 5-(4'-pyridyl)-l-H-l,2,4-triazole and H2oba = 4,4'-oxybis(benzoic acid)), has been synthesized by hydrothermal reactio...A new energetic complex, Ni(3,4'-Hbpt)2(Hoba)2(H20)2 (3,4'-Hbpt = 3-(3-pyridyl)- 5-(4'-pyridyl)-l-H-l,2,4-triazole and H2oba = 4,4'-oxybis(benzoic acid)), has been synthesized by hydrothermal reaction and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, thermogravimetric analyses and X-ray powder diffraction. Single-crystal X-ray diffraction analysis indicates that the complex belongs to the monoclinic system, space group P2j/c with a = 10.2357(9), b = 24.594(2), c = 10.4225(9)/k, β = 114.0110(10)°, V = 2396.7(4) A3, Dc = 1.460 g/cm3,μ = 0.482 mm-1, Mr = 1053.63, F(000) = 1088, Z = 2, the final R = 0.0358 and wR = 0.0973 with I 〉 2σ(I). Both 3,4'-Hbpt and H2oba ligands adopt monodentate modes linking one Ni(II) ion to form a 0D motif. Furthermore, the 0D motifs are linked into a 3D supramolecular architecture with hydrogen bonds. In addition, the catalytic performance for thermal decomposition of the efficacy of ammonium perchlorate (AP) is explored by differential scanning calorimetry (DSC), which indicates that the complex is a good candidate for a promoter of the thermal decomposition of ammonium perchlorate.展开更多
A simple and efficient method for the selective iodination of various aromatic compounds by using potassium iodide in the presence of benzyltnphenylphosphonium perchlorate,is reported.This method provides several adva...A simple and efficient method for the selective iodination of various aromatic compounds by using potassium iodide in the presence of benzyltnphenylphosphonium perchlorate,is reported.This method provides several advantages such as good selectivity between ortho and para positions of aromatic compounds and high yields of the products.展开更多
Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant e...Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant efficiency and improved safety.It is found that with the increasing dosage of NGPs into AP,the two exothermal peaks of AP merge into one intense exothermal peak,indicating that an "energy stacking" has been achieved.Meanwhile,the unique delay of the first exothermal peak of AP is conducive to the safety of AP in application process.Furthermore,the dependence of decomposition heat of AP on dosage and calcination temperature is more evident than on the surface areas of NGPs,suggesting that the promotion effect of NGPs on the thermal decomposition of AP does not only rely on the surface interaction.Therefore,an electron transfer mechanism is proposed to illustrate the decomposition process of AP tuned by NGPs.展开更多
A new energetic complex,[Co(3,3?-Hbpt)(Htm)]·H_2O(1,3,3?-Hbpt = 3,5-bis(3-pyridyl)-1H-1,2,4-triazole and H_3tm = trimesic acid),has been synthesized by hydrothermal reactions and characterized by single...A new energetic complex,[Co(3,3?-Hbpt)(Htm)]·H_2O(1,3,3?-Hbpt = 3,5-bis(3-pyridyl)-1H-1,2,4-triazole and H_3tm = trimesic acid),has been synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction,elementary analysis,IR spectroscopy,thermogravimetric analysis and X-ray powder diffraction. Single-crystal X-ray diffraction indicates that the complex belongs to triclinic system,space group P 1 with a = 10.0911(1),b = 10.2573(1),c = 10.6393(1) ?,α = 103.793(2),β = 101.041(2),γ = 107.918(3)o,V = 974.9(2) ?~3,Z = 2,D_c = 1.732 g·cm-3,μ = 0.941 mm^(-1),M_r = 508.31,F(000) = 518,the final R = 0.0523 and wR = 0.0935 with I 〉 2σ(I). In the title complex,Co(Ⅱ) ions are connected by Htm2-anions generating 1D ladder-like chains which are linked by 3,3?-Hbpt to form 1D cages. In addition,the thermal decomposition of ammonium perchlorate(AP) with complex 1 was explored by differential scanning calorimetry(DSC). AP is completely decomposed in a shorter time in the presence of complex 1,and the decomposition heat of the mixture is 2.531 kJ·g^(-1),significantly higher than that of pure AP. By Kissinger's method,the ratio of Ea/ln(A) is 11.05 for the mixture,which indicates that complex 1 shows good catalytic activity toward the AP decomposition.展开更多
Composite solid propellant is prepared using tri-modal Ammonium perchlorate(AP)containing coarse,fine and ultrafine fractions of AP with average particle size(APS)340,40 and 5 mm respectively,in various compositions a...Composite solid propellant is prepared using tri-modal Ammonium perchlorate(AP)containing coarse,fine and ultrafine fractions of AP with average particle size(APS)340,40 and 5 mm respectively,in various compositions and their rheological,mechanical and burn rate characteristics are evaluated.The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading.The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement.The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature.A minimum modulus value was also observed at 9 wt.%of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions.The burn rate is evaluated at different pressures to obtain pressure exponent.Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent.Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt.%using AP with coarse to fine to ultrafine ratio of67:24:9.Higher solid content up to 89 wt.%was achieved and hence increased solid motor performance.The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt.%of AP.Mechanical properties were also studied and from the experiments noticed that%elongation decreased with increased AP content from 67 to 71 wt.%,whereas tensile strength and modulus increased.Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.%of AP due to increased oxidiser to fuel ratio.Catalysed composite solid propellant is prepared by using burn rate modifiers Copper chromite and Iron oxide.Addition of Copper chromite and Iron oxide has enhanced the burn rate of tri-modal AP based composite solid propellant.The catalytic propensity of copper chromite is higher than that of iron oxide.The pressure exponent increased with the catalyst concentration and the values obtained are compatible for solid rocket motor applications.展开更多
Given their unique and excellent properties,metal-organic frameworks(MOFs)materials have been used in many scientific fields.EMOFs use energetic materials as ligands,which can provide part of the energy for the system...Given their unique and excellent properties,metal-organic frameworks(MOFs)materials have been used in many scientific fields.EMOFs use energetic materials as ligands,which can provide part of the energy for the system while catalyzing ammonium perchlorate.The energetic material 1.1'-dihydroxyazotetrazole(H_(2)AzTO),as a high-energy nitrogen-rich material,was selected as a ligand.Five kinds of La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),and Sm^(3+)lanthanide EMOFs were synthesized and obtained.Single crystal X-ray diffraction tests were conducted to obtain the crystal structures of EMOFs 1-5,which indicate that they have similar crystal structures.The thermal stabilities of EMOFs 1-5,which are obtained by differential scanning calorimetry(DSC)tests,are improved compa red with that of the ligand.The results of thermicdecomposition of ammonium perchlorate(AP)and AP mixtures with 10 wt%EMOFs 1-5 show that except for AP mixed with 10 wt%co mpound 2,the high-temperature decomposition peak tempe rature of AP mixed with other compounds is significantly advanced(up to 59.3-88.3 K),and the decomposition of AP is continuous and violent.EMOFs 3-5 have good application prospects for the catalytic thermicdecomposition of AP.展开更多
The decomposition kinetic parameters of ammonium perchlorate(AP) having different grain size(10-390 μ m) were investigated through simultaneous DSC / TGA(differential scanning calorimetry / thermal gravimetric analys...The decomposition kinetic parameters of ammonium perchlorate(AP) having different grain size(10-390 μ m) were investigated through simultaneous DSC / TGA(differential scanning calorimetry / thermal gravimetric analysis) analyzer in a dynamic nitrogen atmosphere under heating rate of 40K / min.The kinetic parameters such as activation energy and pre-exponential factor were determined by the modified isoconversional method.The Brurzauer-Emmett-Teller(BET)-method was applied to measure AP specific surface areas.The results show that the higher the AP particle size the lower the determined kinetic parameters and are matched with some important literatures.展开更多
Three novel rare-earth,nitrogen-rich and oxygen heterocyclic supramolecular complexes,namely[Nd(BTF)_(2)(H_(2)O)_(5)]_(n),[Sm(BTF)_(2)(H_(2)O)_(5)]_(n),and[Eu(BTF)_(2)(H_(2)O)_(5)]_(n),were synthesized.A single crysta...Three novel rare-earth,nitrogen-rich and oxygen heterocyclic supramolecular complexes,namely[Nd(BTF)_(2)(H_(2)O)_(5)]_(n),[Sm(BTF)_(2)(H_(2)O)_(5)]_(n),and[Eu(BTF)_(2)(H_(2)O)_(5)]_(n),were synthesized.A single crystal was obtained by the solvent evaporation method,and the structure and coordination mode of metal complexes were determined by single crystal X-ray diffraction.Results show that the supramolecular complexes contain many hydrogen bonds and thus have good thermal stability(T_(dec)>540 K).The thermal decomposition of ammonium perchlorate(AP)catalyzed by the complexes was investigated by differential thermal analysis,which reveals a pre-eminent catalytic effect on AP.The high temperature decomposition peak of AP can be advanced by nearly 90 K at the amount of added complexes of 10 wt%,and the activation energy of AP descent range is from 70 to 150 kJ/mol.The other properties were fully characterized through elemental analysis and Fourier transform infrared spectroscopy.展开更多
基金supported by the National Natural ScienceFoundation of China(Grant No.52203332)。
文摘The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.
基金supported by the Project of Chinese Manned Spaceflight(No.YYWT-0801-EXP-09)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA17010502)Jiangsu Province Ecological Environment Scientific Research Project(No.2022008).
文摘Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.
基金supported by the National Key Research and Development Program of China(2023YFC3207904).
文摘Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.
基金Supported by the National Natural Science Foundation of China (50306008, 50602024).
文摘The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.
基金Foundation item: Project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Basic Research Program of China (2006CB403301)
文摘To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.
基金supported by the National Natural Science Foundation of China(No.5087816350708067)+1 种基金the National Major Project of Science&Technology Ministry of China(No.2008ZX07421-002)the Research and Development Project of Ministry of Housing and Urban-Rural Development(No.2009K7-4)
文摘Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.
文摘The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.
文摘Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.
文摘Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
基金Project(50574031) supported by the National Natural Science Foundation of China
文摘1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.
基金supported by a grant from the Key Project of Science and Technology of Wuhan (No. 201060938361-08)
文摘The growth inhibition and pro-apoptosis effects of dracorhodin perchlorate on human prostate cancer PC-3 cell line were examined. After administration of 10-80 μmol/L dracorhodin perchlorate for 12-48 h, cell viability of PC-3 cells was measured by MTT colorimetry. Cell proliferation ability was detected by colony formation assay. Cellular apoptosis was inspected by acridine orange-ethidium bromide fluorescent staining, Hoechst 33258 fluorescent staining, and flow cytometry (FCM) with annexin Ⅴ-FITC/propidium iodide dual staining. The results showed that dracorhodin perchlorate inhibited the growth of PC-3 in a dose- and time-dependent manner. IC50 of dracorhodin perchlorate on PC-3 cells at 24 h was 40.18 μmol/L. Cell clone formation rate was decreased by 86% after treatment with 20 μmol/L of dracorhodin perchlorate. Some cells presented the characteristic apoptotic changes. The cellular apoptotic rates induced by 10-40 μmol/L dracorhodin perchlorate for 24 h were 8.43% to 47.71% respectively. It was concluded that dracorhodin perchlorate significantly inhibited the growth of PC-3 cells by suppressing proliferation and inducing apoptosis of the cells.
基金Supported by the National Natural Science Foundation of China(No.21263019)
文摘A new energetic complex, Ni(3,4'-Hbpt)2(Hoba)2(H20)2 (3,4'-Hbpt = 3-(3-pyridyl)- 5-(4'-pyridyl)-l-H-l,2,4-triazole and H2oba = 4,4'-oxybis(benzoic acid)), has been synthesized by hydrothermal reaction and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, thermogravimetric analyses and X-ray powder diffraction. Single-crystal X-ray diffraction analysis indicates that the complex belongs to the monoclinic system, space group P2j/c with a = 10.2357(9), b = 24.594(2), c = 10.4225(9)/k, β = 114.0110(10)°, V = 2396.7(4) A3, Dc = 1.460 g/cm3,μ = 0.482 mm-1, Mr = 1053.63, F(000) = 1088, Z = 2, the final R = 0.0358 and wR = 0.0973 with I 〉 2σ(I). Both 3,4'-Hbpt and H2oba ligands adopt monodentate modes linking one Ni(II) ion to form a 0D motif. Furthermore, the 0D motifs are linked into a 3D supramolecular architecture with hydrogen bonds. In addition, the catalytic performance for thermal decomposition of the efficacy of ammonium perchlorate (AP) is explored by differential scanning calorimetry (DSC), which indicates that the complex is a good candidate for a promoter of the thermal decomposition of ammonium perchlorate.
基金the Gachsaran branch,Islamic Azad University,for the partial support
文摘A simple and efficient method for the selective iodination of various aromatic compounds by using potassium iodide in the presence of benzyltnphenylphosphonium perchlorate,is reported.This method provides several advantages such as good selectivity between ortho and para positions of aromatic compounds and high yields of the products.
基金Project supported by the National Natural Science Foundation of China(51864033,51274123,21761020)the National Key Basic Research Program of China(973 Program,2012CBA01204)Jiangxi Provincial Scientific&Technological Support Project of China(20132BBE500041)
文摘Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant efficiency and improved safety.It is found that with the increasing dosage of NGPs into AP,the two exothermal peaks of AP merge into one intense exothermal peak,indicating that an "energy stacking" has been achieved.Meanwhile,the unique delay of the first exothermal peak of AP is conducive to the safety of AP in application process.Furthermore,the dependence of decomposition heat of AP on dosage and calcination temperature is more evident than on the surface areas of NGPs,suggesting that the promotion effect of NGPs on the thermal decomposition of AP does not only rely on the surface interaction.Therefore,an electron transfer mechanism is proposed to illustrate the decomposition process of AP tuned by NGPs.
基金Supported by the National Natural Science Foundation of China(No.21263019 and 21467022)
文摘A new energetic complex,[Co(3,3?-Hbpt)(Htm)]·H_2O(1,3,3?-Hbpt = 3,5-bis(3-pyridyl)-1H-1,2,4-triazole and H_3tm = trimesic acid),has been synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction,elementary analysis,IR spectroscopy,thermogravimetric analysis and X-ray powder diffraction. Single-crystal X-ray diffraction indicates that the complex belongs to triclinic system,space group P 1 with a = 10.0911(1),b = 10.2573(1),c = 10.6393(1) ?,α = 103.793(2),β = 101.041(2),γ = 107.918(3)o,V = 974.9(2) ?~3,Z = 2,D_c = 1.732 g·cm-3,μ = 0.941 mm^(-1),M_r = 508.31,F(000) = 518,the final R = 0.0523 and wR = 0.0935 with I 〉 2σ(I). In the title complex,Co(Ⅱ) ions are connected by Htm2-anions generating 1D ladder-like chains which are linked by 3,3?-Hbpt to form 1D cages. In addition,the thermal decomposition of ammonium perchlorate(AP) with complex 1 was explored by differential scanning calorimetry(DSC). AP is completely decomposed in a shorter time in the presence of complex 1,and the decomposition heat of the mixture is 2.531 kJ·g^(-1),significantly higher than that of pure AP. By Kissinger's method,the ratio of Ea/ln(A) is 11.05 for the mixture,which indicates that complex 1 shows good catalytic activity toward the AP decomposition.
文摘Composite solid propellant is prepared using tri-modal Ammonium perchlorate(AP)containing coarse,fine and ultrafine fractions of AP with average particle size(APS)340,40 and 5 mm respectively,in various compositions and their rheological,mechanical and burn rate characteristics are evaluated.The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading.The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement.The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature.A minimum modulus value was also observed at 9 wt.%of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions.The burn rate is evaluated at different pressures to obtain pressure exponent.Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent.Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt.%using AP with coarse to fine to ultrafine ratio of67:24:9.Higher solid content up to 89 wt.%was achieved and hence increased solid motor performance.The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt.%of AP.Mechanical properties were also studied and from the experiments noticed that%elongation decreased with increased AP content from 67 to 71 wt.%,whereas tensile strength and modulus increased.Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.%of AP due to increased oxidiser to fuel ratio.Catalysed composite solid propellant is prepared by using burn rate modifiers Copper chromite and Iron oxide.Addition of Copper chromite and Iron oxide has enhanced the burn rate of tri-modal AP based composite solid propellant.The catalytic propensity of copper chromite is higher than that of iron oxide.The pressure exponent increased with the catalyst concentration and the values obtained are compatible for solid rocket motor applications.
基金Project supported by the National Natural Science Foundation of China(21875192)the Basic Research Project of Sichuan Province for Science and Technology Development(2019YJ0355)+1 种基金Outstanding Youth Science and Technology Talents Program of Sichuan(19JCQN0085)the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(20fksy04)。
文摘Given their unique and excellent properties,metal-organic frameworks(MOFs)materials have been used in many scientific fields.EMOFs use energetic materials as ligands,which can provide part of the energy for the system while catalyzing ammonium perchlorate.The energetic material 1.1'-dihydroxyazotetrazole(H_(2)AzTO),as a high-energy nitrogen-rich material,was selected as a ligand.Five kinds of La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),and Sm^(3+)lanthanide EMOFs were synthesized and obtained.Single crystal X-ray diffraction tests were conducted to obtain the crystal structures of EMOFs 1-5,which indicate that they have similar crystal structures.The thermal stabilities of EMOFs 1-5,which are obtained by differential scanning calorimetry(DSC)tests,are improved compa red with that of the ligand.The results of thermicdecomposition of ammonium perchlorate(AP)and AP mixtures with 10 wt%EMOFs 1-5 show that except for AP mixed with 10 wt%co mpound 2,the high-temperature decomposition peak tempe rature of AP mixed with other compounds is significantly advanced(up to 59.3-88.3 K),and the decomposition of AP is continuous and violent.EMOFs 3-5 have good application prospects for the catalytic thermicdecomposition of AP.
文摘The decomposition kinetic parameters of ammonium perchlorate(AP) having different grain size(10-390 μ m) were investigated through simultaneous DSC / TGA(differential scanning calorimetry / thermal gravimetric analysis) analyzer in a dynamic nitrogen atmosphere under heating rate of 40K / min.The kinetic parameters such as activation energy and pre-exponential factor were determined by the modified isoconversional method.The Brurzauer-Emmett-Teller(BET)-method was applied to measure AP specific surface areas.The results show that the higher the AP particle size the lower the determined kinetic parameters and are matched with some important literatures.
基金project supported by the National Natural Science Foundation of China(21875192)Outstanding Youth Science and Technology Talents Program of Sichuan(19JCQN0085)the Basic Research Project of Sichuan Province for Science and Technology Development(2019YJ0355)。
文摘Three novel rare-earth,nitrogen-rich and oxygen heterocyclic supramolecular complexes,namely[Nd(BTF)_(2)(H_(2)O)_(5)]_(n),[Sm(BTF)_(2)(H_(2)O)_(5)]_(n),and[Eu(BTF)_(2)(H_(2)O)_(5)]_(n),were synthesized.A single crystal was obtained by the solvent evaporation method,and the structure and coordination mode of metal complexes were determined by single crystal X-ray diffraction.Results show that the supramolecular complexes contain many hydrogen bonds and thus have good thermal stability(T_(dec)>540 K).The thermal decomposition of ammonium perchlorate(AP)catalyzed by the complexes was investigated by differential thermal analysis,which reveals a pre-eminent catalytic effect on AP.The high temperature decomposition peak of AP can be advanced by nearly 90 K at the amount of added complexes of 10 wt%,and the activation energy of AP descent range is from 70 to 150 kJ/mol.The other properties were fully characterized through elemental analysis and Fourier transform infrared spectroscopy.