Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemic...The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemical mobility of radionuclides,a critical factor for predicting their migration and environmental impact.The objective of the research was to determine the uranium species in both peat and sedimentary rock samples of the sludge storage facility and the adjacent area.Laboratory analyses included XRD,XRF analysis using synchrotron radiation,and scanning electron microscopy to study the composition and properties of minerals.The uranium species were further identified using a modified Tessier sequential extraction method.The results revealed that uranium predominantly occurs in a stable silicate-bound form(up to 80%)in sedimentary rocks,indicating minimal geochemical mobility.In contrast,in peat deposits,uranium is primarily associated with manganese and iron oxides(30–60%)as well as organic matter(5–40%),with the most mobile forms constituting less than 5%.The decrease in uranium concentration with distance from the facility was attributed to sorption onto organic matter and co-precipitation with mineral compounds,manganese and iron oxides,which serve as effective natural sorbents.The findings highlight the critical role of organic matter and metal oxides in limiting uranium migration,thus identifying them as key components in the formation of natural barriers for radionuclides.These results are crucial for assessing environmental risks associated with radioactive waste management and for developing strategies to minimize the ecological impact of sludge storages.展开更多
Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibilit...Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibility,and strong rheological properties.These characteristics result in a complex consolidation process.A systematic understanding of the consolidation mechanism of peat soil is essential for elucidating its consolidation behavior.Previous studies have failed to provide consistent information on the microscopic morphology of peat soil.Moreover,quantitative studies on pore structure changes during peat soil consolidation remain lacking.To resolve these research gaps,the microscopic morphology and pore types of peat,highly organic peaty soil,and medium organic peaty soil from certain regions of Yunnan province,China,were observed and analyzed using scanning electron microscopy.Additionally,quantitative research on pore structure changes during peat soil consolidation was conducted.The results show that the humic acid in peat soil of Yunnan province has no pores,and there is no pore between humic acid and clay minerals.There are three typical pore structures,and the three typical pores were quantitatively analyzed.During consolidation,the consolidation deformation of peat soil is primarily caused by the internal pore compression of plant residues and pores between plant residues.At the same time,the revelation of the differentiated influence mechanism of load levels on the compression of inter/intra-plant residue pores.The decrease in the proportion of pores between plant residues first increased and then decreased with an increase in load,reaching a peak between 100-200 kPa.The decrease in pores inside the plant residues increased with an increasing load.Additionally,pore compression between the plant residues under different load levels primarily caused the compression deformation of Dali peat during the primary consolidation stage.By contrast,the pore compression inside the plant residues primarily caused the compression deformation during the secondary consolidation stage.展开更多
The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
Peat and peatified wood are significant carbohydrate resources in tropical rainforests. The carbohydrates of cellulose and hemicellulose are important sources of monosaccharides for both vital activities and industria...Peat and peatified wood are significant carbohydrate resources in tropical rainforests. The carbohydrates of cellulose and hemicellulose are important sources of monosaccharides for both vital activities and industrial applications, such as furan production of furfural and hydroxymethyl furfural. Hydrothermal treatment at 200°C and ultrasonic irradiation pretreatment were used to recover monosaccharides from the abovementioned resources. The monosaccharide recovery from peat was shown to be higher than that from peatified wood. The conversion to organic acids is considered to proceed rapidly because acids are always detected with monosaccharides. This conversion is outstripped by the organic acid-to-gas reaction for treatment times longer than 20 min. The monosaccharide recovery from peatified wood was improved by the ultrasonication pretreatment. It is considered that ultrasonic irradiation broke down lignin blockages, enabling water molecules to access the carbohydrates more easily in the subsequent hydrothermal treatment.展开更多
Tropic and sub-tropic tidal flats (generalised) are a kind of speific peat-forming environments. Taking the Mangrove tidal flats and mangrove pets in Hainan island as a example, the authors deeply study and discuss th...Tropic and sub-tropic tidal flats (generalised) are a kind of speific peat-forming environments. Taking the Mangrove tidal flats and mangrove pets in Hainan island as a example, the authors deeply study and discuss the peat-forming mechanism of tropic and sub-tropic tidal flats. The conclusions are as follows: intrusion accretiou of plant organic matter is more important ; the organic matter has accumulated witk high productivity, high return rate and high decompeition rate ;anaerobic bacterin play a more important role during early peatification ; sea level change is the fundameutal factor controlling the formation and evolution of tidal flat peat-forming environments; lagoon peat-flat and delta peat-flat are main types of tidal flat peat-forming euvironments ;tidal flat peat-forming environments are remarkably characterized by low-level and rabe properties.展开更多
Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of...Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome).展开更多
Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit gr...Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves.展开更多
In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of ...In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of tidal flats and the peat flats are developed in a specific evolution stage of mangrove tidal flats; the mangrove peats are the products of a specific evolution stage of the mangrove tidal flats.展开更多
The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a ...The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organicmatter-removed and peat humus using the batch-equilibration procedure, and identified soilproperties that influenced DCD sorption. The sorption on peat humus was higher than that on thephaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed,indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathicproperty the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased fromabout 2 to 5, but a further increase in pH led to a rise in DCD sorption. The DCD desorptionhysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01mol L^(-1) CaCl_2 as the background electrolyte, suggesting that the hydrophobic domains of organicmatter may play an important role in DCD sorption.展开更多
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s...In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.展开更多
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
基金supported by the Russian Science Foundation grant number 23-27-00362,https://rscf.ru/en/project/23-27-00362/.
文摘The study aims to investigate uranium species in the sediments of the natural-technogenic system within a sludge storage facility in Russia.The relevance of this work is underscored by the need to assess the geochemical mobility of radionuclides,a critical factor for predicting their migration and environmental impact.The objective of the research was to determine the uranium species in both peat and sedimentary rock samples of the sludge storage facility and the adjacent area.Laboratory analyses included XRD,XRF analysis using synchrotron radiation,and scanning electron microscopy to study the composition and properties of minerals.The uranium species were further identified using a modified Tessier sequential extraction method.The results revealed that uranium predominantly occurs in a stable silicate-bound form(up to 80%)in sedimentary rocks,indicating minimal geochemical mobility.In contrast,in peat deposits,uranium is primarily associated with manganese and iron oxides(30–60%)as well as organic matter(5–40%),with the most mobile forms constituting less than 5%.The decrease in uranium concentration with distance from the facility was attributed to sorption onto organic matter and co-precipitation with mineral compounds,manganese and iron oxides,which serve as effective natural sorbents.The findings highlight the critical role of organic matter and metal oxides in limiting uranium migration,thus identifying them as key components in the formation of natural barriers for radionuclides.These results are crucial for assessing environmental risks associated with radioactive waste management and for developing strategies to minimize the ecological impact of sludge storages.
基金supported by the Fundamental Research Funds for the Central Universities(2025JBZY019)the Funding of Key Research and Development Project of CCCC(2021-ZJKJ-18).
文摘Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibility,and strong rheological properties.These characteristics result in a complex consolidation process.A systematic understanding of the consolidation mechanism of peat soil is essential for elucidating its consolidation behavior.Previous studies have failed to provide consistent information on the microscopic morphology of peat soil.Moreover,quantitative studies on pore structure changes during peat soil consolidation remain lacking.To resolve these research gaps,the microscopic morphology and pore types of peat,highly organic peaty soil,and medium organic peaty soil from certain regions of Yunnan province,China,were observed and analyzed using scanning electron microscopy.Additionally,quantitative research on pore structure changes during peat soil consolidation was conducted.The results show that the humic acid in peat soil of Yunnan province has no pores,and there is no pore between humic acid and clay minerals.There are three typical pore structures,and the three typical pores were quantitatively analyzed.During consolidation,the consolidation deformation of peat soil is primarily caused by the internal pore compression of plant residues and pores between plant residues.At the same time,the revelation of the differentiated influence mechanism of load levels on the compression of inter/intra-plant residue pores.The decrease in the proportion of pores between plant residues first increased and then decreased with an increase in load,reaching a peak between 100-200 kPa.The decrease in pores inside the plant residues increased with an increasing load.Additionally,pore compression between the plant residues under different load levels primarily caused the compression deformation of Dali peat during the primary consolidation stage.By contrast,the pore compression inside the plant residues primarily caused the compression deformation during the secondary consolidation stage.
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
文摘Peat and peatified wood are significant carbohydrate resources in tropical rainforests. The carbohydrates of cellulose and hemicellulose are important sources of monosaccharides for both vital activities and industrial applications, such as furan production of furfural and hydroxymethyl furfural. Hydrothermal treatment at 200°C and ultrasonic irradiation pretreatment were used to recover monosaccharides from the abovementioned resources. The monosaccharide recovery from peat was shown to be higher than that from peatified wood. The conversion to organic acids is considered to proceed rapidly because acids are always detected with monosaccharides. This conversion is outstripped by the organic acid-to-gas reaction for treatment times longer than 20 min. The monosaccharide recovery from peatified wood was improved by the ultrasonication pretreatment. It is considered that ultrasonic irradiation broke down lignin blockages, enabling water molecules to access the carbohydrates more easily in the subsequent hydrothermal treatment.
文摘Tropic and sub-tropic tidal flats (generalised) are a kind of speific peat-forming environments. Taking the Mangrove tidal flats and mangrove pets in Hainan island as a example, the authors deeply study and discuss the peat-forming mechanism of tropic and sub-tropic tidal flats. The conclusions are as follows: intrusion accretiou of plant organic matter is more important ; the organic matter has accumulated witk high productivity, high return rate and high decompeition rate ;anaerobic bacterin play a more important role during early peatification ; sea level change is the fundameutal factor controlling the formation and evolution of tidal flat peat-forming environments; lagoon peat-flat and delta peat-flat are main types of tidal flat peat-forming euvironments ;tidal flat peat-forming environments are remarkably characterized by low-level and rabe properties.
基金the IPPP grant PV018-2011A for financial support from the University of Malaya
文摘Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome).
基金This research was funded by the Ministry of Higher Education Malaysia via the Fundamental Research Grant Scheme(FRGS/1/2020/WAB03/UPM/02/1)。
文摘Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves.
文摘In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of tidal flats and the peat flats are developed in a specific evolution stage of mangrove tidal flats; the mangrove peats are the products of a specific evolution stage of the mangrove tidal flats.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2004AA246020) the National Natural Science Foundation for Distinguished Young Scholars, China(No. 20225722).
文摘The sorption-desorption behavior of dicyandiamide (DCD) is an importantchemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCDsorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organicmatter-removed and peat humus using the batch-equilibration procedure, and identified soilproperties that influenced DCD sorption. The sorption on peat humus was higher than that on thephaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed,indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathicproperty the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased fromabout 2 to 5, but a further increase in pH led to a rise in DCD sorption. The DCD desorptionhysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01mol L^(-1) CaCl_2 as the background electrolyte, suggesting that the hydrophobic domains of organicmatter may play an important role in DCD sorption.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADC4B17 and 2006 BAD16B09)the Beijing Key Discipline Construction Project of Biomass Engineering Interdisciplinary
文摘In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.