Titanium dioxide(TiO 2) samples of different crystal forms were prepared by hydrolysis tetrabutyl titanate in various water to alkoxide ratios and sintering the hydrolysis product at different temperatures. The photo...Titanium dioxide(TiO 2) samples of different crystal forms were prepared by hydrolysis tetrabutyl titanate in various water to alkoxide ratios and sintering the hydrolysis product at different temperatures. The photocatalysts coated on hollow glass beads and loaded with platinum varying from 0.2% to 2.4% by weight.The photocatalytic degradation rate of sodium pentachlorophenolate (PCP-Na) depends on the preparing conditions such as: sintering temperatures, water to alkoxide ratios( R ), platinum content and the size. The proper conditions of preparation photocatalysts are as follows: the ratio of TiO 2 : sodium silicate : hollow glass beads : platinum is 10:5:20:0.15(w/w), R is 100, sintering temperature is 650℃, and the size of hollow glass is 0.5-1 mm. Under these conditions, the ratio between acatase and rutile of the photocatalyst is 2:1, and the photocatalytic activity is high.展开更多
A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in ter...A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in terms of sodium pentachlorophenol(PCP-Na) decomposition and mineralization. The structural and physicochemical properties of these nanocomposites were characterized by X-ray diffraction, N2adsorption–desorption, transmission electron microscopy, scanning electron microscopy, Ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectra, and Fourier-transform infrared spectroscopy. The graphene–TiO2nanocomposites exhibited higher photocatalytic efficiency than commercial P25 for the degradation of PCP-Na, and 63.4% to 82.9% of the total organic carbon was fully mineralized. The improved photocatalytic activity may be attributed to the accelerated interfacial electron-transfer process and the significantly prolonged lifetime of electron-hole pairs imparted by graphene sheets in the nanocomposites. However,excessive graphene and the inhomogeneous aggregation of TiO2 nanoparticles may decrease photodegradation efficiency.展开更多
文摘Titanium dioxide(TiO 2) samples of different crystal forms were prepared by hydrolysis tetrabutyl titanate in various water to alkoxide ratios and sintering the hydrolysis product at different temperatures. The photocatalysts coated on hollow glass beads and loaded with platinum varying from 0.2% to 2.4% by weight.The photocatalytic degradation rate of sodium pentachlorophenolate (PCP-Na) depends on the preparing conditions such as: sintering temperatures, water to alkoxide ratios( R ), platinum content and the size. The proper conditions of preparation photocatalysts are as follows: the ratio of TiO 2 : sodium silicate : hollow glass beads : platinum is 10:5:20:0.15(w/w), R is 100, sintering temperature is 650℃, and the size of hollow glass is 0.5-1 mm. Under these conditions, the ratio between acatase and rutile of the photocatalyst is 2:1, and the photocatalytic activity is high.
基金supported by the National Natural Science Foundation of China (No. 41371472)
文摘A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in terms of sodium pentachlorophenol(PCP-Na) decomposition and mineralization. The structural and physicochemical properties of these nanocomposites were characterized by X-ray diffraction, N2adsorption–desorption, transmission electron microscopy, scanning electron microscopy, Ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectra, and Fourier-transform infrared spectroscopy. The graphene–TiO2nanocomposites exhibited higher photocatalytic efficiency than commercial P25 for the degradation of PCP-Na, and 63.4% to 82.9% of the total organic carbon was fully mineralized. The improved photocatalytic activity may be attributed to the accelerated interfacial electron-transfer process and the significantly prolonged lifetime of electron-hole pairs imparted by graphene sheets in the nanocomposites. However,excessive graphene and the inhomogeneous aggregation of TiO2 nanoparticles may decrease photodegradation efficiency.