Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesio...Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesions remain unclear.Long non-coding RNAs(lnc RNAs)have been shown to influence the occurrence and development of these lesions.We previously identified lnc_011797 as a biomarker of white matter lesions by high-throughput sequencing.To investigate the mechanism by which lnc_011797 regulates white matter lesions,we established subjected human umbilical vein endothelial cells to oxygenglucose deprivation to simulate conditions associated with white matter lesions.The cells were transfected with lnc_011797 overexpression or knockdown lentiviruses.Our findings indicate that lnc_011797 promoted ferroptosis in these cells,leading to the formation of white matter lesions.Furthermore,lnc_011797 functioned as a competitive endogenous RNA(ce RNA)for mi R-193b-3p,thereby regulating the expression of WNK1 and its downstream ferroptosis-related proteins.To validate the role of lnc_011797 in vivo,we established a mouse model of white matter lesions through bilateral common carotid artery stenosis.The results from this model confirmed that lnc_011797 regulates ferroptosis via WNK1 and promotes the development of white matter lesions.These findings clarify the mechanism by which lnc RNAs regulate white matter lesions,providing a new target for the diagnosis and treatment of white matter lesions.展开更多
基金supported by the Qingdao Medical Health Research Project,No.2023-WJZD212(to XX)。
文摘Recent evidence suggests that ferroptosis plays a crucial role in the occurrence and development of white matter lesions.However,the mechanisms and regulatory pathways involved in ferroptosis within white matter lesions remain unclear.Long non-coding RNAs(lnc RNAs)have been shown to influence the occurrence and development of these lesions.We previously identified lnc_011797 as a biomarker of white matter lesions by high-throughput sequencing.To investigate the mechanism by which lnc_011797 regulates white matter lesions,we established subjected human umbilical vein endothelial cells to oxygenglucose deprivation to simulate conditions associated with white matter lesions.The cells were transfected with lnc_011797 overexpression or knockdown lentiviruses.Our findings indicate that lnc_011797 promoted ferroptosis in these cells,leading to the formation of white matter lesions.Furthermore,lnc_011797 functioned as a competitive endogenous RNA(ce RNA)for mi R-193b-3p,thereby regulating the expression of WNK1 and its downstream ferroptosis-related proteins.To validate the role of lnc_011797 in vivo,we established a mouse model of white matter lesions through bilateral common carotid artery stenosis.The results from this model confirmed that lnc_011797 regulates ferroptosis via WNK1 and promotes the development of white matter lesions.These findings clarify the mechanism by which lnc RNAs regulate white matter lesions,providing a new target for the diagnosis and treatment of white matter lesions.