The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In t...The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In this work,we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst(SAC)comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon(Co-N/MPC),forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity.The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation,significantly boosting the intrinsic ORR-OER duplex activity.Under illumination,g-C_(3)N_(4)@Co-N/MPC exhibits an outstanding ORR half-wave potential(E1/2)of 0.841 V(vs.RHE)in 0.1 mol L^(–1)KOH and a low OER overpotential of 497.4 mV(vs.RHE)at 10 mA cm^(–2)in 1 mol L^(–1)KOH.Notably,the catalyst achieves an exceptional peak power density of 850.7 mW cm^(–2)in ZABs and of 411 mW cm^(–2)even in H_(2)-air fuel cell.In addition,g-C_(3)N_(4)@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h.The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics,and the mass transport owing to hierarchical mesoporous structure of Co-N-C,thereby reducing the overpotential and enhancing the overall energy conversion efficiency.This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts,paving the way for high-performance photo-enhanced energy storage and conversion systems.展开更多
Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing signi...Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.展开更多
The p-n junction is the foundation building structure for manufacturing various electronic and optoelec-tronic devices.Ultrawide bandgap semiconductors are expected to overcome the limited power capability of Si-based...The p-n junction is the foundation building structure for manufacturing various electronic and optoelec-tronic devices.Ultrawide bandgap semiconductors are expected to overcome the limited power capability of Si-based electronic device,however,it is very difficult to achieve efficient bipolar doping due to the asymmetric doping effect,thereby impeding the development of p-n homojunction and related bipolar devices,especially for the Ga_(2)O_(3)-based materials and devices.Here,we demonstrate a unique one-step integrated growth of p-type N-doped(201)β-Ga_(2)O_(3)/n-type Si-doped(¯201)β-Ga_(2)O_(3)films by phase tran-sition and in-situ pre-doping of dopants,and fabrication of fullβ-Ga_(2)O_(3)linearly-graded p-n homojunc-tion diode from them.The fullβ-Ga_(2)O_(3)p-n homojunction diode possesses a large built-in potential of 4.52 eV,a high operation electric field>2.90 MV/cm in the reverse-bias regime,good longtime-stable rectifying behaviors with a rectification ratio of 104,and a high-speed switching and good surge robust-ness with a weak minority-carrier charge storage.Our work opens the way to the fabrication of Ga_(2)O_(3)-based p-n homojunction,lays the foundation for fullβ-Ga_(2)O_(3)-based bipolar devices,and paves the way for the novel fabrication of p-n homojunction for wide-bandgap oxides.展开更多
Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co...Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466%and 4.96%(420nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications.展开更多
Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to...Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.展开更多
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)and high over potential of oxygen evolution reaction(OER)are big challenges in the development of high-performance zinc-air batteries(ZABs)and fuel cells.In this work,we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst(SAC)comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon(Co-N/MPC),forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity.The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation,significantly boosting the intrinsic ORR-OER duplex activity.Under illumination,g-C_(3)N_(4)@Co-N/MPC exhibits an outstanding ORR half-wave potential(E1/2)of 0.841 V(vs.RHE)in 0.1 mol L^(–1)KOH and a low OER overpotential of 497.4 mV(vs.RHE)at 10 mA cm^(–2)in 1 mol L^(–1)KOH.Notably,the catalyst achieves an exceptional peak power density of 850.7 mW cm^(–2)in ZABs and of 411 mW cm^(–2)even in H_(2)-air fuel cell.In addition,g-C_(3)N_(4)@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h.The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics,and the mass transport owing to hierarchical mesoporous structure of Co-N-C,thereby reducing the overpotential and enhancing the overall energy conversion efficiency.This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts,paving the way for high-performance photo-enhanced energy storage and conversion systems.
基金The Natural Science Foundation of Guangdong Province(Project No.2023A1515012352)。
文摘Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3605500 and 2022YFB3605503).
文摘The p-n junction is the foundation building structure for manufacturing various electronic and optoelec-tronic devices.Ultrawide bandgap semiconductors are expected to overcome the limited power capability of Si-based electronic device,however,it is very difficult to achieve efficient bipolar doping due to the asymmetric doping effect,thereby impeding the development of p-n homojunction and related bipolar devices,especially for the Ga_(2)O_(3)-based materials and devices.Here,we demonstrate a unique one-step integrated growth of p-type N-doped(201)β-Ga_(2)O_(3)/n-type Si-doped(¯201)β-Ga_(2)O_(3)films by phase tran-sition and in-situ pre-doping of dopants,and fabrication of fullβ-Ga_(2)O_(3)linearly-graded p-n homojunc-tion diode from them.The fullβ-Ga_(2)O_(3)p-n homojunction diode possesses a large built-in potential of 4.52 eV,a high operation electric field>2.90 MV/cm in the reverse-bias regime,good longtime-stable rectifying behaviors with a rectification ratio of 104,and a high-speed switching and good surge robust-ness with a weak minority-carrier charge storage.Our work opens the way to the fabrication of Ga_(2)O_(3)-based p-n homojunction,lays the foundation for fullβ-Ga_(2)O_(3)-based bipolar devices,and paves the way for the novel fabrication of p-n homojunction for wide-bandgap oxides.
基金support provided by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS)(No.FRGS/1/2024/TK08/XMU/02/1)supported by the PETRONAS-Academia Collaboration Dialogue(PACD 2023)grant,provided by PETRONAS Research Sdn.Bhd.(PRSB)+6 种基金the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF)(S.22015)supported by the National Natural Science Foundation of China(No.22202168)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111019)support from the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(No.2023X11)supported by the Embassy of the People's Republic of China in Malaysia(EENG/0045)funded by Xiamen University Malaysia Investigatorship Grant(No.IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041 and XMUMRF/2025-C15/IENG/0080).
文摘Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466%and 4.96%(420nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications.
基金supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577078)the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021)~~
文摘Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.