期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A systematic study of carbon-free oxide-based lining for preventing submerged entry nozzle clogging in continuous casting of rare earth steel 被引量:2
1
作者 Fei-xiang Ma Qiang Gu +2 位作者 Guo-qi Liu Yi Zhang Hong-xia Li 《Journal of Iron and Steel Research International》 2025年第6期1584-1595,共12页
The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically... The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically studied.A variety of lining composite test methods were innovatively used to ensure the consistency of test conditions.The experimental results showed that the mullite(acidic oxide)has strong reactivity with rare earth inclusions,and the spinel(basic oxide)has stable chemical properties and weak reactivity with rare earth inclusions.Because alumina is one of the main reactants of clogging formation,corundum is not suitable for SEN lining.There are less clogs on the surface of zirconia,but it will be exsoluted and unstable.Therefore,solving the problem of zirconia exsolution will greatly strengthen its application in SEN lining. 展开更多
关键词 Submerged entry nozzle Rare earth molten steel Anti-clogging Carbon-free oxide-based lining
原文传递
A Review on Metal-and Metal Oxide-Based Nanozymes:Properties,Mechanisms,and Applications 被引量:36
2
作者 Qianwen Liu Amin Zhang +2 位作者 Ruhao Wang Qian Zhang Daxiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期147-199,共53页
Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rap... Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies.As promising alterna-tives for natural enzymes,nanozymes have broadened the way toward clinical medicine,food safety,environmental monitoring,and chemical production.The past decade has witnessed the rapid development of metal-and metal oxide-based nanozymes owing to their remarkable physicochemical proper-ties in parallel with low cost,high stability,and easy storage.It is widely known that the deep study of catalytic activities and mechanism sheds sig-nificant influence on the applications of nanozymes.This review digs into the characteristics and intrinsic properties of metal-and metal oxide-based nanozymes,especially emphasizing their catalytic mechanism and recent applications in biological analysis,relieving inflammation,antibacterial,and cancer therapy.We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials. 展开更多
关键词 Metal-and metal oxide-based nanozymes Intrinsic properties Catalytic mechanism Applications
在线阅读 下载PDF
Oxide-based cathode materials for rechargeable zinc ion batteries:Progresses and challenges 被引量:7
3
作者 Yingze Zhou Fandi Chen +6 位作者 Hamidreza Arandiyan Peiyuan Guan Yunjian Liu Yuan Wang Chuan Zhao Danyang Wang Dewei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期516-542,I0013,共28页
With the increasing demands for electrical energy storage technologies,rechargeable zinc ion batteries(ZIBs)have been rapidly developed in recent years owing to their high safety,low cost and high energy storage capab... With the increasing demands for electrical energy storage technologies,rechargeable zinc ion batteries(ZIBs)have been rapidly developed in recent years owing to their high safety,low cost and high energy storage capability.The cathode is an essential part of ZIBs,which hosts zinc ions and determines the capacity,rate and cycling performance of the battery.The mainstream cathodes for ZIBs are oxidebased materials with tunnel,layer or 3 D crystal structures.In this review,we mainly focus on the latest advanced oxide-based cathode materials in ZIBs,including manganese oxides,vanadium oxides,spinel compounds,and other metal oxide based cathodes.In addition,the mechanisms of zinc storage and recent development in cathode design have been discussed in detail.Finally,current challenges and perspectives for the future research directions of oxide-based cathodes in ZIBs are presented. 展开更多
关键词 Zinc ion batteries oxide-based cathode Manganese oxides cathode Vanadium oxides cathode
在线阅读 下载PDF
Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization,and prospects 被引量:2
4
作者 Mengwei Guo Rongrong Deng +1 位作者 Chaowu Wang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期537-553,I0015,共18页
The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen ene... The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis,several obstacles,such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier,should be overcome.Manganese oxide-based(MnOx) materials,especially MnO_(2),have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their wellbalanced properties between catalytic activity and stability.This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials,including the conventional adsorbate evolution mechanism(AEM) and emerging lattice oxygen oxidation mechanism(LOM).The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory(DFT) calculations.Then,the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed.Afterward,feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control,reasonable setting of working potential and electrolyte environment,optimal selection of acid-stable conductive supports,and self-healing engineering.Finally,future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid. 展开更多
关键词 Manganese oxide-based materials Manganese dioxides ELECTROCATALYSTS Oxygen evolution reaction Acidic solution
在线阅读 下载PDF
Zinc Oxide-Based Q-Switched Erbium-Doped Fiber Laser 被引量:1
5
作者 N.A.Aziz A.A.Latiff +2 位作者 M.Q.Lokman E.Hanafi S.W.Harun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期43-45,共3页
We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alc... We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications. 展开更多
关键词 Zinc oxide-based Q-Switched Erbium-Doped Fiber Laser SA ZnO
原文传递
Magnetic behaviors of cerium oxide-based thin films deposited using electrochemical method
6
作者 彭英姿 李源 +2 位作者 白茹 霍德璇 钱正洪 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期432-438,共7页
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice... Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice. 展开更多
关键词 cerium oxide-based thin films anodic electrochemical method absorptive oxygen magnetic behaviors
原文传递
Constructing a multifunctional mesoporous composite of metallic cobalt nanoparticles and nitrogen-doped reduced graphene oxides for high-performance lithium-sulfur batteries 被引量:3
7
作者 Luhai Gai Chenhao Zhao +2 位作者 Ya Zhang Zhibiao Hu Qiang Shen 《Carbon Energy》 SCIE CAS 2022年第2期142-154,共13页
Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysu... Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysulfide intermediates(Li_(2)S_(n),3≤n≤8).In this paper,a three-dimensional mesoporous reduced graphene oxide-based nanocomposite,with the embedding of metallic Co nanoparticles and the doping of elemental N(Co/NrGO),and its simply ground mixture with powdered S at a mass ratio of 1:6(Co/NrGO/S)are prepared and used as cathode-/separator-coated interlayers and working electrodes in assembled Li-S cells,respectively.One of the effective cell configurations is to paste composite Co/NrGO onto both the S-loading cathode and separator,showing good cycling stability(1070mAh g^(−1) in the 100th cycle at 0.2 C),highrate capability(835mAh g^(−1),2.0 C),and excellent durability(905mAh g^(−1) in the 250th cycle at 0.5 or 0.2 C).Compared with the experimental results of Co-absent NrGO,electrochemical properties of various Co/NrGO-based cell configurations clearly show multiple functions of Co/NrGO,indicating that the absence of Co/NrGO coatings and/or Co nanoparticles may be inadequate to achieve superior S availability of assembled Li-S batteries. 展开更多
关键词 high-performance mechanism lithium-sulfur batteries MULTIFUNCTIONAL three-dimensional mesoporous reduced graphene oxide-based nanocomposite
在线阅读 下载PDF
Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries 被引量:2
8
作者 Jie Xu Shuming Dou +3 位作者 Yaqi Wang Qunyao Yuan Yida Deng Yanan Chen 《Transactions of Tianjin University》 EI CAS 2021年第3期248-268,共21页
Potassium-ion batteries(KIBs)are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium.Unfortunately,th... Potassium-ion batteries(KIBs)are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium.Unfortunately,the actual application of KIBs is inferior to that of lithium-ion batteries(LIBs),in which the fi nite energy density,ordinary circular life,and underdeveloped fabrication technique dominate the key constraints.Various works have recently been directed to growing novel anode electrodes with superior electrochemical capability.Noticeably,metals/metal oxides materials(e.g.,Sb,Sn,Zn,SnO_(2),and MoO_(2))have been widely investigated as KIBs anodes because of high theoretical capacity,suggesting outstanding promise for high-energy KIBs.In this review,the latest research of metals/metal oxides electrodes for potassium storage is summarized.The major strategies to control the electrochemical property of metals/metal oxides electrodes are discussed.Finally,the future investigation foreground for these anode electrodes has been proposed. 展开更多
关键词 Potassium-ion batteries Metal-based anodes Metallic oxide-based anodes Electrochemical performance Nanostructure
在线阅读 下载PDF
Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
9
作者 Rui Liu Yongli He +4 位作者 Shanshan Jiang Li Zhu Chunsheng Chen Ying Zhu Qing Wan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期52-56,共5页
Emulation of synaptic function by ionic/electronic hybrid device is crucial for brain-like computing and neuromorphic systems.Electric-double-layer(EDL)transistors with proton conducting electrolytes as the gate diele... Emulation of synaptic function by ionic/electronic hybrid device is crucial for brain-like computing and neuromorphic systems.Electric-double-layer(EDL)transistors with proton conducting electrolytes as the gate dielectrics provide a prospective approach for such application.Here,artificial synapses based on indium-tungsten-oxide(IWO)-based EDL transistors are proposed,and some important synaptic functions(excitatory post-synaptic current,paired-pulse facilitation,filtering)are emulated.Two types of spike-timing-dependent plasticity(Hebbian STDP and anti-Hebbian STDP)learning rules and multistore memory(sensory memory,short-term memory,and long-term memory)are also mimicked.At last,classical conditioning is successfully demonstrated.Our results indicate that IWO-based neuromorphic transistors are interesting for neuromorphic applications. 展开更多
关键词 neuromorphic transistors synaptic plasticity oxide-based semiconductors classical conditioning
原文传递
Recent advances in diverse nanosystems for nitric oxide delivery in cancer therapy 被引量:3
10
作者 Dan Gao Sajid Asghar +5 位作者 Rongfeng Hu Su Chen Ruixin Niu Jia Liu Zhipeng Chen Yanyu Xiao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第4期1498-1521,共24页
Gas therapy has been proven to be a promising and advantageous treatment option for cancers.Studies have shown that nitric oxide(NO)is one of the smallest structurally significant gas molecules with great potential to... Gas therapy has been proven to be a promising and advantageous treatment option for cancers.Studies have shown that nitric oxide(NO)is one of the smallest structurally significant gas molecules with great potential to suppress cancer.However,there is controversy and concern about its use as it exhibits the opposite physiological effects based on its levels in the tumor.Therefore,the anti-cancer mechanism of NO is the key to cancer treatment,and rationally designed NO delivery systems are crucial to the success of NO biomedical applications.This review summarizes the endogenous production of NO,its physiological mechanisms of action,the application of NO in cancer treatment,and nano-delivery systems for delivering NO donors.Moreover,it briefly reviews challenges in delivering NO from different nanoparticles and the issues associated with its combination treatment strategies.The advantages and challenges of various NO delivery platforms are recapitulated for possible transformation into clinical applications. 展开更多
关键词 Nitric oxide Nitric oxide donor Nitric oxide-based delivery system ANTI-CANCER Binding mechanisms Synergistic treatment strategy Inorganic platforms Organic platforms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部