The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,P...The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.展开更多
The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been app...The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been applied to various payoff structures,and options trading is based on Black and Scholes’principle of dynamic hedging to estimate and assess option prices over time.However,the Black–Scholes model requires severe constraints,assumptions,and conditions to be applied to real-life financial and economic problems.Several methods and approaches have been developed to approach these conditions,such as fractional Black–Scholes models based on fractional derivatives.These fractional models are expected since the Black–Scholes equation is derived using Ito’s lemma from stochastic calculus,where fractional derivatives play a leading role.Hence,a fractional stochastic model that includes the basic Black–Scholes model as a special case is expected.However,these fractional financial models require computational tools and advanced analytical methods to solve the associated fractional Black–Scholes equations.Nevertheless,it is believed that the fractal nature of economic processes permits to model economical and financial markets problems more accurately compared to the conventional model.The relationship between fractional calculus and fractals is well-known in the literature.This study introduces a generalized Black–Scholes equation in fractal dimensions and discusses its role in financial marketing.In our analysis,we consider power-laws properties for volatility,interest rated,and dividend payout,which emerge in several empirical regularities in quantitative finance and economics.We apply our model to study the problem of pricing barrier option and we estimate the values of fractal dimensions in both time and in space.Our model can be used to obtain the prices of many pay-off models.We observe that fractal dimensions considerably affect the solutions of the Black–Scholes equation and that,for fractal dimensions much smaller than unity,the call option increases significantly.We prove that fractal dimensions are a powerful tool to obtain new results.Further details are analyzed and discussed.展开更多
Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)...Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.展开更多
In the past decade,financial institutions have invested significant efforts in the development of accurate analytical credit scoring models.The evidence suggests that even small improvements in the accuracy of existin...In the past decade,financial institutions have invested significant efforts in the development of accurate analytical credit scoring models.The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure.Despite continuing efforts,the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data.We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction.To contribute to the field of financial innovation,this study proposes a Dimension Reduction Assisted Credit Scoring(DRA-CS)method via distance covariance-based sufficient dimension reduction(DCOV-SDR)in Majorization-Minimization(MM)algorithm.First,in the presence of a large number of variables,the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction.Second,when the DRA-CS method is employed with logistic regression,it outperforms existing methods based on different variable selection techniques.This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods.展开更多
The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale dataset...The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale datasets.Existing dimensionality reduction methods have achieved partial success in addressing this issue.However,they remain limited in terms of the achievable degree of dimensionality reduction.An incremental deep dimensionality reduction approach is proposed herein to significantly reduce matrix size and is applied to Bayesian linearized inversion(BLI),a stochastic seismic inversion approach that heavily depends on large sparse matrices inversion.The proposed method first employs a linear transformation based on the discrete cosine transform(DCT)to extract the matrix's essential information and eliminate redundant components,forming the foundation of the dimensionality reduction framework.Subsequently,an innovative iterative DCT-based dimensionality reduction process is applied,where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce dimensionality,thereby effectively eliminating matrix redundancy in depth.This process is referred to as the incremental discrete cosine transform(IDCT).Ultimately,a linear IDCT-based reduction operator is constructed and applied to the kernel matrix inversion in BLI,resulting in a more efficient BLI framework.The proposed method was evaluated through synthetic and field data tests and compared with conventional dimensionality reduction methods.The IDCT approach significantly improves the dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy,demonstrating prominent advantages in solving Bayesian inverse problems more efficiently.展开更多
Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the...Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.展开更多
With the rapid advancement of global socio-economy and mounting environmental and ecological risks,China faces challenges in ensuring its food security and sustainable development,which further affects global food tra...With the rapid advancement of global socio-economy and mounting environmental and ecological risks,China faces challenges in ensuring its food security and sustainable development,which further affects global food trade and security.This study aims to identify the supply-demand match between cropland supply and food consumption and to evaluate sustainable cropland zoning in multiple scenarios and multidimensional assessments.This study uses ecological,environmental and socioeconomic data to quantify diverse food demand patterns into corresponding cropland demands,further mapping the spatio-temporal characteristics of China's cropland supply-demand matches.By utilizing shared socioeconomic pathways(SSPs),this study delineates multiple scenarios to determine the supply-demand of cropland across different Chinese regions from 2030 to 2050.On the basis of ecological,geographical and socioeconomic datasets,this study constructs a multidimensional and multiscenario framework for sustainable agricultural zoning from 2030 to 2050 and proposes a future sustainable agricultural development strategy for each region in different periods.The results indicate that between 2002 and 2022,there was a significant gap between cropland supply and demand.Moreover,an obvious spatial mismatch is observed between cropland supply and demand across various Chinese regions.From 2030 to 2050,there is a noticeable shift in the spatial distribution of cropland supply and demand,with the supply-demand match becoming more strained and varying considerably under different development scenarios.With significant differences between different development scenarios,different regions will have to adopt different development strategies at different periods.This study proposes a multiscenario and multidimensional simulation framework for future agricultural sustainable zoning,which aims to provide scientific insights and policy improvements to promote sustainable agricultural development.展开更多
Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as o...Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as one of the most useful methods,has been applied in many studies to investigate the chaos and detect the intrinsic dimensions of underlying dynamic systems.However,this method often relies on manual inspection due to uncertainties from iden-tifying the scaling region,making the correlation dimension value calculation troublesome and subjective.Therefore,it is necessary to propose a fast and intelligent algorithm to solve the above problem.This study implies the distinct windows tracking technique and fuzzy C-means clustering algorithm to accu-rately identify the scaling range and estimate the correlation dimension values.The proposed method is verified using the classic Lorenz chaotic system and 10 streamflow series in the Daling River basin of Liaoning Province,China.The results reveal that the proposed method is an intelligent and robust method for rapidly and accurately calculating the correlation dimension values,and the average operation efficiency of the proposed algorithm is 30 times faster than that of the original Grassberger-Procaccia algorithm.展开更多
Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstructi...Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
In this article,we first establish a recollement related to projectively coresolved Gorenstein flat(PGF)complexes.Secondly,we define and study PGF dimension of complexes,we denote it PG F(X)for a complex X.It is shown...In this article,we first establish a recollement related to projectively coresolved Gorenstein flat(PGF)complexes.Secondly,we define and study PGF dimension of complexes,we denote it PG F(X)for a complex X.It is shown that the PGF(X)is equal to the infimum of the set{supA|there exists a diagram of morphisms of complexes A←G→X,such that G→X is a special PGF precover of X and G→A is a PGF almost isomorphism}.展开更多
Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has becom...Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is...Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.展开更多
Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the futu...Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation.展开更多
Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirem...Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement of blade tenon of aero-engine. Residual stresses, surface roughness, microstructure and microhardness are measured on ground surfaces of the specimen, which are all compared with that ground with vitrified CBN wheels. Under all the circumstances, compressive residual stress is obtained and the depth of the machining affected zone is found to be less than 40 μm. No phase transformation is observed at depths of up to 100 lain below the surface, though plastic deformation is visible in the process of grain refinement. The residual stress and microhardness of specimens ground with brazed CBN wheels are observed to be lower than those ground with vitrified ones. The arithmetic mean roughness (Ra) values obtained are all below 0.8μm.展开更多
An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on...An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.展开更多
In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequenc...In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.展开更多
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t...Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
文摘The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.
基金Rami Ahmad El-Nabulsi has received funding from the Czech National Agency of Agricultural 533 Research,project QK22020134“Innovative fisheries management of a large reservoir”.
文摘The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been applied to various payoff structures,and options trading is based on Black and Scholes’principle of dynamic hedging to estimate and assess option prices over time.However,the Black–Scholes model requires severe constraints,assumptions,and conditions to be applied to real-life financial and economic problems.Several methods and approaches have been developed to approach these conditions,such as fractional Black–Scholes models based on fractional derivatives.These fractional models are expected since the Black–Scholes equation is derived using Ito’s lemma from stochastic calculus,where fractional derivatives play a leading role.Hence,a fractional stochastic model that includes the basic Black–Scholes model as a special case is expected.However,these fractional financial models require computational tools and advanced analytical methods to solve the associated fractional Black–Scholes equations.Nevertheless,it is believed that the fractal nature of economic processes permits to model economical and financial markets problems more accurately compared to the conventional model.The relationship between fractional calculus and fractals is well-known in the literature.This study introduces a generalized Black–Scholes equation in fractal dimensions and discusses its role in financial marketing.In our analysis,we consider power-laws properties for volatility,interest rated,and dividend payout,which emerge in several empirical regularities in quantitative finance and economics.We apply our model to study the problem of pricing barrier option and we estimate the values of fractal dimensions in both time and in space.Our model can be used to obtain the prices of many pay-off models.We observe that fractal dimensions considerably affect the solutions of the Black–Scholes equation and that,for fractal dimensions much smaller than unity,the call option increases significantly.We prove that fractal dimensions are a powerful tool to obtain new results.Further details are analyzed and discussed.
基金supported by the Science Foundation of China University of Petroleum,Beijing(2462023SZBH013)the China Postdoctoral Science Foundation(2023M743878)+2 种基金the Postdoctoral Fellowship Program of CPSF(GZB20240848)supported partially by the NSFC(12271176)the Guangdong Natural Science Foundation(2024A1515010946).
文摘Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.
文摘In the past decade,financial institutions have invested significant efforts in the development of accurate analytical credit scoring models.The evidence suggests that even small improvements in the accuracy of existing credit-scoring models may optimize profits while effectively managing risk exposure.Despite continuing efforts,the majority of existing credit scoring models still include some judgment-based assumptions that are sometimes supported by the significant findings of previous studies but are not validated using the institution’s internal data.We argue that current studies related to the development of credit scoring models have largely ignored recent developments in statistical methods for sufficient dimension reduction.To contribute to the field of financial innovation,this study proposes a Dimension Reduction Assisted Credit Scoring(DRA-CS)method via distance covariance-based sufficient dimension reduction(DCOV-SDR)in Majorization-Minimization(MM)algorithm.First,in the presence of a large number of variables,the DRA-CS method results in greater dimension reduction and better prediction accuracy than the other methods used for dimension reduction.Second,when the DRA-CS method is employed with logistic regression,it outperforms existing methods based on different variable selection techniques.This study argues that the DRA-CS method should be used by financial institutions as a financial innovation tool to analyze high-dimensional customer datasets and improve the accuracy of existing credit scoring methods.
基金partly supported by Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0052)National Natural Science Foundation of China(42274154,42304116)+2 种基金Natural Science Foundation of Heilongjiang Province,China(LH2024D013)Heilongjiang Postdoctoral Fund(LBHZ23103)Hainan Yazhou Bay Science and Technology City Jingying Talent Project(SKJC-JYRC-2024-05)。
文摘The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale datasets.Existing dimensionality reduction methods have achieved partial success in addressing this issue.However,they remain limited in terms of the achievable degree of dimensionality reduction.An incremental deep dimensionality reduction approach is proposed herein to significantly reduce matrix size and is applied to Bayesian linearized inversion(BLI),a stochastic seismic inversion approach that heavily depends on large sparse matrices inversion.The proposed method first employs a linear transformation based on the discrete cosine transform(DCT)to extract the matrix's essential information and eliminate redundant components,forming the foundation of the dimensionality reduction framework.Subsequently,an innovative iterative DCT-based dimensionality reduction process is applied,where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce dimensionality,thereby effectively eliminating matrix redundancy in depth.This process is referred to as the incremental discrete cosine transform(IDCT).Ultimately,a linear IDCT-based reduction operator is constructed and applied to the kernel matrix inversion in BLI,resulting in a more efficient BLI framework.The proposed method was evaluated through synthetic and field data tests and compared with conventional dimensionality reduction methods.The IDCT approach significantly improves the dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy,demonstrating prominent advantages in solving Bayesian inverse problems more efficiently.
基金Jiangxi Province Intelligent Building Engineering Research Center Open Fund Project,Fractal Theory of Performing Architectural Form Design Research(Project No.:EZ202111440).
文摘Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.
基金Zhejiang Provincial Sannong-Jiufang Science and Technology Collaboration Initiative,No.2025SNJF012。
文摘With the rapid advancement of global socio-economy and mounting environmental and ecological risks,China faces challenges in ensuring its food security and sustainable development,which further affects global food trade and security.This study aims to identify the supply-demand match between cropland supply and food consumption and to evaluate sustainable cropland zoning in multiple scenarios and multidimensional assessments.This study uses ecological,environmental and socioeconomic data to quantify diverse food demand patterns into corresponding cropland demands,further mapping the spatio-temporal characteristics of China's cropland supply-demand matches.By utilizing shared socioeconomic pathways(SSPs),this study delineates multiple scenarios to determine the supply-demand of cropland across different Chinese regions from 2030 to 2050.On the basis of ecological,geographical and socioeconomic datasets,this study constructs a multidimensional and multiscenario framework for sustainable agricultural zoning from 2030 to 2050 and proposes a future sustainable agricultural development strategy for each region in different periods.The results indicate that between 2002 and 2022,there was a significant gap between cropland supply and demand.Moreover,an obvious spatial mismatch is observed between cropland supply and demand across various Chinese regions.From 2030 to 2050,there is a noticeable shift in the spatial distribution of cropland supply and demand,with the supply-demand match becoming more strained and varying considerably under different development scenarios.With significant differences between different development scenarios,different regions will have to adopt different development strategies at different periods.This study proposes a multiscenario and multidimensional simulation framework for future agricultural sustainable zoning,which aims to provide scientific insights and policy improvements to promote sustainable agricultural development.
基金IWHR Basic Scientific Research Project,Grant/Award Number:JZ110145B0072024IWHR Internationally-Oriented Talent for International Academic Leader Program,Grant/Award Number:0203982012National Natural Science Foundation of China,Grant/Award Number:51609257。
文摘Detecting the complexity of natural systems,such as hydrological systems,can help improve our understanding of complex interactions and feedback between variables in these systems.The correlation dimension method,as one of the most useful methods,has been applied in many studies to investigate the chaos and detect the intrinsic dimensions of underlying dynamic systems.However,this method often relies on manual inspection due to uncertainties from iden-tifying the scaling region,making the correlation dimension value calculation troublesome and subjective.Therefore,it is necessary to propose a fast and intelligent algorithm to solve the above problem.This study implies the distinct windows tracking technique and fuzzy C-means clustering algorithm to accu-rately identify the scaling range and estimate the correlation dimension values.The proposed method is verified using the classic Lorenz chaotic system and 10 streamflow series in the Daling River basin of Liaoning Province,China.The results reveal that the proposed method is an intelligent and robust method for rapidly and accurately calculating the correlation dimension values,and the average operation efficiency of the proposed algorithm is 30 times faster than that of the original Grassberger-Procaccia algorithm.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2902103National Natural Science Foundation of China,Grant/Award Number:51934001Fundamental Research Funds for the Central Universities,Grant/Award Number:2023JCCXLJ02。
文摘Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
基金Supported by the National Natural Science Foundation of China(12061061)Young Talents Team Project of Gansu Province(2025QNTD49)+1 种基金Lanshan Talents Project of Northwest Minzu University(Xbmulsrc202412)Longyuan Young Talents of Gansu Province。
文摘In this article,we first establish a recollement related to projectively coresolved Gorenstein flat(PGF)complexes.Secondly,we define and study PGF dimension of complexes,we denote it PG F(X)for a complex X.It is shown that the PGF(X)is equal to the infimum of the set{supA|there exists a diagram of morphisms of complexes A←G→X,such that G→X is a special PGF precover of X and G→A is a PGF almost isomorphism}.
基金Center for Sinicized Marxism and Traditional Culture,Sichuan University of Science&Engineering(Project No.:ZMCY202410)。
文摘Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
基金support from National Natural Science Foundation of China(Grant Nos.22275145,22305189and 21875184)Natural Science Foundation of Shaanxi Province(Grant Nos.2022JC-10 and 2024JC-YBQN-0112).
文摘Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.
基金supported by a grant from R&D Program Development of Rail-Specific Digital Resource Technology Based on an AI-Enabled Rail Support Platform,grant number PK2401C1,of the Korea Railroad Research Institute.
文摘Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation.
基金National Fundamental Research Program of China (2009CB724403)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement of blade tenon of aero-engine. Residual stresses, surface roughness, microstructure and microhardness are measured on ground surfaces of the specimen, which are all compared with that ground with vitrified CBN wheels. Under all the circumstances, compressive residual stress is obtained and the depth of the machining affected zone is found to be less than 40 μm. No phase transformation is observed at depths of up to 100 lain below the surface, though plastic deformation is visible in the process of grain refinement. The residual stress and microhardness of specimens ground with brazed CBN wheels are observed to be lower than those ground with vitrified ones. The arithmetic mean roughness (Ra) values obtained are all below 0.8μm.
基金Project(50874045)supported by the National Natural Science Foundation of China
文摘An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.
基金sponsored by the National Nature Science Foundation of china(Grant No.40774064)National Hi-tech Research and Development Program of China(863 Program)(Grant No.2006AA0AA102-12)
文摘In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.
文摘Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.