期刊文献+

HAUSDORFF DIMENSION OF RECURRENCE SETS FOR MATRIX TRANSFORMATIONS OF TORI

在线阅读 下载PDF
导出
摘要 Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.
作者 Zhangnan HU Bing LI 胡张楠;李兵
出处 《Acta Mathematica Scientia》 2025年第4期1659-1673,共15页 数学物理学报(B辑英文版)
基金 supported by the Science Foundation of China University of Petroleum,Beijing(2462023SZBH013) the China Postdoctoral Science Foundation(2023M743878) the Postdoctoral Fellowship Program of CPSF(GZB20240848) supported partially by the NSFC(12271176) the Guangdong Natural Science Foundation(2024A1515010946).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部