A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gen...A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gene sequence as well as Biolog microbial identification system. Strain BAP5 could grow in mineral salt medium with 50 mg/L of BaP and degrade about 20% BaP after 30 d of incubation. Ochrobactrum sp. BAP5 was able to utilize other polycyclic aromatic hydrocarbons (PAHs) (such as phenanthrene, pyrene and fluoranthene) as the sole carbon source and energy source, suggesting its potential application in PAHs bioremediation. The profile of total soluble protein from Ochrobactrum sp. BAP5 was also investigated. Some over- and special-expressed proteins of strain BAP5 when incubated with the presence of BaP were detected by two-dimensional polyacrylamide gel electrophoresis, and found to be related with PAHs metabolism, DNA translation, and energy production based on peptide fingerprint analysis through matrix-assisted laser desorption/ionization-time of flight mass spectrometry.展开更多
An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the E...An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the East China Sea. The strain, designated WZUH09-1, is able to depolymerize alginates with higher enzyme activity than that of others reported so far.展开更多
麦草畏是理想的抗除草剂转基因工程的靶标除草剂;发掘新的麦草畏高效降解菌株和基因具有非常重要的理论和应用价值.从南京土壤样品中分离到一株麦草畏高效降解菌株,命名为3-3.根据生理生化特征和16S r DNA序列相似性分析,将其初步鉴定...麦草畏是理想的抗除草剂转基因工程的靶标除草剂;发掘新的麦草畏高效降解菌株和基因具有非常重要的理论和应用价值.从南京土壤样品中分离到一株麦草畏高效降解菌株,命名为3-3.根据生理生化特征和16S r DNA序列相似性分析,将其初步鉴定为苍白杆菌属(Ochrobactrum sp.).菌株3-3在48 h内完全降解100 mg/L的麦草畏.该菌株降解麦草畏的最适温度为30℃,最适p H为7.0.代谢产物高效液相和质谱鉴定结果表明该菌株降解麦草畏的起始步骤是脱甲基,形成没有除草活性的3,6-二氯水杨酸(DCSA).菌株粗酶液只在NADH存在时才有麦草畏脱甲基酶活性.PCR扩增和该菌基因组生物信息学分析表明该菌株没有已报道的麦草畏脱甲基酶基因DMO、Mtv及Dmt或其同源序列.总之,本研究首次分离筛选到苍白杆菌属的麦草畏降解菌,且该菌可能存在一个新的氧化酶类麦草畏脱甲基酶基因.展开更多
A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After ...A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After inserting the cloned gene into the expression vector pET23a, it was expressed in E. coli BL21(DE3)pLysS, and its product was purified to homogeneity through chromatography. The Ochrobactrum sp. 531 MCO, consisting of 533 amino acids with a molecular mass of 57.8 kDa, was quite stable in neutral pH and showed laccase-like activity oxidizing 2,6-dimethoxyphenol (DMP), 2,2’-azino-bis(3-ethylbe- nzthiazolinesulfonic acid) (ABTS), and syringaldazine (SGZ). The enzyme showed optimum activity towards DMP, ABTS, and SGZ at the pH 8.0, 3.6, and 7.5 respectively. Kinetic studies gave this enzyme Km, kcat and kcat//Km values of: 0.09 mM, 7.94 s–1, and 88.22 s–1?mM–1 for DMP;0.072 mM, 2.95 s–1, and 40.97 s–1.mM–1 for ABTS;and 0.015 mM, 2.4 s–1, and 160 s–1.mM–1 for SGZ. Our results demonstrate that Ochrobactrum sp. 531 MCO is a bacterial laccase which oxidized phenolic substrates DMP and SGZ effectively under alkaline conditions. These unusual properties make the enzyme an interesting biocatalyst in applications for which classical laccases are unsuitable.展开更多
Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharg...Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharge. Bioremediation is considered to be a promising approach as it is eco- friendly and efficient. The exopolysaccharide (EPS) produced by the O. anthropi acts as a bioemulsifier and showed the highest emulsification activity of 60% on diesel. An EPS yield of about 0.42 g/L was obtained under optimized conditions. The carbohydrate and protein content of the EPS was found to be 71.1% and 19.7% respectively, showing the glycoprotein nature. The structural properties of EPS were analyzed by FT-IR and 1H NMR. The batch degradation of oil in PRW by O. anthropi was studied gravimetrically, and showed about 53% degradation in 7 days, indicating the strong ability of the isolated strain to degrade the hydrocarbons in PRW.展开更多
基金supported by the National Natural Sci-ence Foundation of China (No 40206015, 30970106)the Fork Ying Tong Education Foundation (No 94002) the Science and Technology Project of Guangdong Province,China (No 2006A36502001, 2007A032600003)
文摘A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gene sequence as well as Biolog microbial identification system. Strain BAP5 could grow in mineral salt medium with 50 mg/L of BaP and degrade about 20% BaP after 30 d of incubation. Ochrobactrum sp. BAP5 was able to utilize other polycyclic aromatic hydrocarbons (PAHs) (such as phenanthrene, pyrene and fluoranthene) as the sole carbon source and energy source, suggesting its potential application in PAHs bioremediation. The profile of total soluble protein from Ochrobactrum sp. BAP5 was also investigated. Some over- and special-expressed proteins of strain BAP5 when incubated with the presence of BaP were detected by two-dimensional polyacrylamide gel electrophoresis, and found to be related with PAHs metabolism, DNA translation, and energy production based on peptide fingerprint analysis through matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
文摘An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the East China Sea. The strain, designated WZUH09-1, is able to depolymerize alginates with higher enzyme activity than that of others reported so far.
文摘A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After inserting the cloned gene into the expression vector pET23a, it was expressed in E. coli BL21(DE3)pLysS, and its product was purified to homogeneity through chromatography. The Ochrobactrum sp. 531 MCO, consisting of 533 amino acids with a molecular mass of 57.8 kDa, was quite stable in neutral pH and showed laccase-like activity oxidizing 2,6-dimethoxyphenol (DMP), 2,2’-azino-bis(3-ethylbe- nzthiazolinesulfonic acid) (ABTS), and syringaldazine (SGZ). The enzyme showed optimum activity towards DMP, ABTS, and SGZ at the pH 8.0, 3.6, and 7.5 respectively. Kinetic studies gave this enzyme Km, kcat and kcat//Km values of: 0.09 mM, 7.94 s–1, and 88.22 s–1?mM–1 for DMP;0.072 mM, 2.95 s–1, and 40.97 s–1.mM–1 for ABTS;and 0.015 mM, 2.4 s–1, and 160 s–1.mM–1 for SGZ. Our results demonstrate that Ochrobactrum sp. 531 MCO is a bacterial laccase which oxidized phenolic substrates DMP and SGZ effectively under alkaline conditions. These unusual properties make the enzyme an interesting biocatalyst in applications for which classical laccases are unsuitable.
基金the Department of Science and Technology, India for financial support under fast track scheme for young scientist (SR/FT/LS-19/2012)
文摘Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharge. Bioremediation is considered to be a promising approach as it is eco- friendly and efficient. The exopolysaccharide (EPS) produced by the O. anthropi acts as a bioemulsifier and showed the highest emulsification activity of 60% on diesel. An EPS yield of about 0.42 g/L was obtained under optimized conditions. The carbohydrate and protein content of the EPS was found to be 71.1% and 19.7% respectively, showing the glycoprotein nature. The structural properties of EPS were analyzed by FT-IR and 1H NMR. The batch degradation of oil in PRW by O. anthropi was studied gravimetrically, and showed about 53% degradation in 7 days, indicating the strong ability of the isolated strain to degrade the hydrocarbons in PRW.