The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guod...The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guoda,nor intra-continental(or intraplate)orogenic belts generated by intraplate dynamics,as argued by some scholars-rather,they are superposed orogenic belts formed on the pre-existing continental crust in eastern China due to Mesozoic Paleo-Pacific dynamic system.In the past,these orogenic belts were called the marginal Pacific epicontinental activation belts of eastern China.In the Mesozoic,under the effect of Paleo-Pacific dynamic system,the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin(Russia)-Japan-Ryukyu-Taiwan(China)-Palawan(Philippines)regions,while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin.The two orogenic systems,both driven by Mesozoic Paleo-Pacific dynamic system,developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia,radically changing the pre-Indosian tectonic framework of the area.展开更多
0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exe...0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).展开更多
The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Am...The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Amadeus Basin.Several studies have investigated the metamorphic and deformational evolution of the Petermann Orogen;however,the spatiotemporal variation of the deformation and cooling history is yet to be fully understood.In situ muscovite and biotite Rb-Sr geochronology,in combination with Ti-in-quartz thermometry is applied to map the spatiotemporal deformation and cooling patterns of the northern part of the Petermann Orogen.Interpreted muscovite Rb-Sr growth ages obtained from samples in the Petermann Nappe Complex(PNC),range between c.598 Ma and 565 Ma,which correlate with the timing of deformation during the 600-520 Ma Petermann Orogeny.Interpreted muscovite and biotite cooling ages are younger in the east of the PNC(c.556-541 Ma)and broadly correlate with the regional pattern of crustal heat production,suggesting that the geothermal gradient had a significant control on the timing and duration of cooling.Biotite Rb-Sr cooling ages between c.555 Ma and 497 Ma for the orogenic core show no correlation with high heat production areas,however,differences in exhumed crustal levels across the Petermann Orogen are observed:high-P granulite facies rocks in the orogenic core vs middle-upper crustal rocks in the PNC,indicating that at least part of the spatiotemporal variation of cooling ages can be attributed to differential exhumation during the Petermann Orogeny.Hence,crustal heat production and differential exhumation were likely the main controlling factors on the duration and variation of cooling rates in the Petermann Orogen.展开更多
A cluster of serpentinite bodies has been recognized tectonically emplaced within the greenschist-amphibolite-facies metamorphic terrane in Hong'an,western Dabie orogen,central China.Two types of serpentinites are...A cluster of serpentinite bodies has been recognized tectonically emplaced within the greenschist-amphibolite-facies metamorphic terrane in Hong'an,western Dabie orogen,central China.Two types of serpentinites are identified on the basis of integrated petrographic,mineralogical and geochemical study.The first type,represented by Yinshanzhai serpentinite complex(Group 1)comprises heterogeneous lithology as a massive serpentinite matrix“intruded”by antigoriteenriched serpentinite lenses.They are both pseudomorphic textured with different mineral assemblages indicating an increasing temperature-pressure condition.Serpentinite matrix(Group 1a)is chemically characterized by high MgO/SiO_(2)and low Al_(2)O_(3)/SiO_(2),Ti and Ca contents,suggesting a depleted mantle wedge origin.The coexistence of compositionally-heterogeneous chromite with highCr^(#)(0.78-0.96)and intermediate-Cr^(#)(0.59-0.70)pristine cores indicates extensive mantle melting.Meanwhile,extremely high Fo olivine relicts(96-97)with considerably higher MnO and lower NiO contents than mantle olivine indicate that they are metamorphic products from serpentine decomposition.Accordingly,we propose that Yinshanzhai serpentinite complex experienced two distinct episodes of hydration.The serpentinite lenses(Group 1b)show higher SiO_(2)and lower MgO concentrations.Nevertheless,the trace elements of groups 1a and 1b are consistent:U-shaped REE patterns,positive Eu anomalies and enrichment of LILE(i.e.,Cs,U)are all identified as forearc properties.They are affected by reducing slab-derived fluids in forearc mantle,with f_(O2)of 1 to 2 logarithmic units below f_(O2)of fayalite-magnetite-quartz buffer(FMQ-2~FMQ-1).The second type is antigorite-serpentinites(Group2)represented by Ximaoshan and Wangchunwan blocks.They are non-pseudomorphic,with no primary framework silicate surviving.Fertile compositions(i.e.,higher Al_(2)O_(3)and Al_(2)O_(3)/SiO_(2),nearly flat REE patterns)and conjoint enrichment of LILE with HFSE suggest melt/rock interaction.Negative Ce,Eu anomalies,and enriched U relative to alkaline elements demonstrate interactions with more oxidized seawater or seafloor fluids(FMQ~FMQ-1).Remarkable Sr negative anomalies may be attributed to Sr release during lizardite/antigorite transition in subduction zone,indicating interaction with low-Sr slab fluids.We propose that Group 2 serpentinites originate either from mantle wedge or abyssal peridotites,refertilized by mantle melts,then hydrated in seafloor or shallow forearc and entrapped into subduction channel.Combined with geochronology and tectonic constraints of associated eclogites in Hong'an terrane,the two types of serpentinites may correlate with subduction of different oceanic basins during the late Paleozoic and/or Proterozoic eras.It raises possibility of defining an ophiolitic setting in Hong'an Orogen for which further evidence is required.展开更多
Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mi...Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.展开更多
A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on thi...A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.展开更多
In the western segment of the East Kunlun Orogen(WEKO),muscovite granite and garnet granite from the Hureguole intrusion exhibit zircon U-Pb ages of 435-442 Ma.Geochemically,these rocks contain high concentrations of ...In the western segment of the East Kunlun Orogen(WEKO),muscovite granite and garnet granite from the Hureguole intrusion exhibit zircon U-Pb ages of 435-442 Ma.Geochemically,these rocks contain high concentrations of SiO_(2),K_(2)O and Al_(2)O_(3),with low concentrations of TiO_(2)and MgO,indicating a peraluminous high-K calc-alkaline affinity.They are enriched in Rb,Th,U and LREE,depleted in Eu,Ba,Sr and Ti,being classified as S-type granites.Negative whole-rockε_(Nd)(t)values(-9.8 to-9.1)and zirconε_(Hf)(t)values(-11.6 to-8.2)for those granites indicate that they were derived from partial melting of pelitic rocks in the Paleoproterozoic Baishahe Formation of the Jinshuikou Group.Based on the collected zircon ages,Cambrian-Devonian magmatic activity in the WEKO was divided into three stages:early(446-520 Ma),middle(427-441 Ma)and late(372-424 Ma)stages.Statistically,whole-rock Nd and zircon Hf isotope data(ε_(Nd)(t)/T_(DM)^(Nd),ε_(Hf)(t)/T_(DMC)^(Hf))from Paleozoic igneous rocks in the WEKO reveal a magma source that was initially dominated by depleted mantle components in the northward subduction stage of the Proto-Tethy an Ocean plate(446-520 Ma),shifting to predominantly crustal sources during the closure period of the North Qimantagh back-arc basin(427-441 Ma),then to crust-mantle mixed sources in the post-collision stage(372-424 Ma).展开更多
Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbo...Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.展开更多
The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks...The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB.Sedimentary rocks in the WKOB received little attention in the past;however,they could provide important constraints on the evolution of the oceanic lithosphere.Here,a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their deposition ages and explore their significance in the evolution of the ProtoTethys oceanic crust.The U-Pb dating and europium anomaly(Eu/Eu^(*))were analyzed for detrital zircons from greywackes interlayers,while bulk rare earth elements and yttrium(REY)of the shales were measured.Detrital zircons U-Pb ages yield a maximum deposition age of 436 Ma for the greywackes and black shales,while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales.Accordingly,the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician-Early Silurian period.The maximum deposition age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean,which is also supported by the absence of increases in Eu/Eu^(*)values during the Late Ordovician-Early Silurian.Besides,our Eu/Eu^(*)values in detrital zircons indicate diminished orogenesis during the Archean to Meso-Proterozoic,subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.展开更多
As a highly coupled aggregate of tectonism,magmatism,and metamorphism,a gneiss dome is usually taken as a vital window for understanding the crustal internal structure and the exchange of material and energy during or...As a highly coupled aggregate of tectonism,magmatism,and metamorphism,a gneiss dome is usually taken as a vital window for understanding the crustal internal structure and the exchange of material and energy during orogenic exhumation.The Qinghe gneiss dome located in the eastern Chinese Altai orogen,lies in Qinghe County,Xinjiang,records important information of late accretionary orogeny associated with continental uplift and crustal growth.According to the field investigation,the dome shows core-mantle-margin domains,in which the core is composed of migmatized granite and gneiss,the mantle consists of banded gneiss,schist,and leptynite,and the margin has rock assemblages of phyllite,schist,and meta-sandstone.From the margin to the core,the dome can be divided into chlorite-sericite,andalusite-staurolite,sillimanite-biotite,and sillimanite-garnet metamorphic zones,recording progressive metamorphism.Detailed structural analyses in the Qinghe gneiss dome indicate progressive deformation from the margin to the core.Internal and external detachment faults are clarified,with the former characterized by inflow and outward migration of crustal material and the latter marked by brittle-ductile deformation with a lineation indicating lateral slip of the upper wall when the dome uplifted.Based on these faults,upper,middle,lower structural layers are observed from the outer to inner domains of the dome.Considering the general geological background and new data,the Qinghe gneiss dome probably predominantly underwent early ductile shear deformation and late heat-flow diapirism in the early Permian,closely related to upwelling of asthenosphere mantle that resulted from slab break-off in the extensional tectonic setting.展开更多
We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and g...We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and geochemical data,the granitoids in the region can be divided into two age groups:ca.285 Ma and ca.269 Ma.The granitoids of the first group are mainly composed of calc-alkaline to high-K calc-alkaline,weakly peraluminous Ⅰ-type granodiorites with ε_(Hf)(t)values of-19.6 to-4.3,which demonstrates evidence of crustal reworking;the granitoids of the second group,however,mainly consist of A-type granites that are high-K calc-alkaline to shoshonite,metaluminous to weakly peraluminous,and have high 10,000×Ga/Al ratios(2.59-3.12)and ε_(Hf)(t)values ranging from-11.3 to-2.7,all of which demonstrates a mixed crust-mantle source.We interpret the granitoids of the first group to have formed during the subduction of Central Asian oceanic crust and the second group to have formed by the asthenospheric upwelling caused by the formation of slab windows during late ocean ridge subduction.展开更多
The Xing'an-Inner Mongolia Orogen is a critical tectonic unit for constraining the evolution of the Paleo-Asian Ocean.However,the location and time of the closure of the Paleo-Asian Ocean are still debated.Here,we...The Xing'an-Inner Mongolia Orogen is a critical tectonic unit for constraining the evolution of the Paleo-Asian Ocean.However,the location and time of the closure of the Paleo-Asian Ocean are still debated.Here,we select a representative basin in Dashizhai in northeastern China,using U-Pb zircon geochronology and geochemistry to analyze the sedimentary facies,depositional ages,and provenance.The results show that the ages of the Dashizhai Formation range from 400 to 347 Ma,the Shoushangou Formation range from 400 to 348 Ma,the Zhesi Formation range from 307 to 252 Ma,and the Linxi Formation range from 299 to 241 Ma.The Dashizhai Formation is composed of metamorphic andesite and clastic rocks.The Shoushangou Formation comprises siltstone,rhyolite,and argillaceous siltstone.The Zhesi and Linxi Formations are composed of mudstone and argillaceous siltstone.Geochemical data shows that these rocks are enriched in light rare earth elements and depleted in Eu with various La/Sc,Th/Sc,and La/Co ratios.The Permian Dashizhai Basin is from Permian volcanic and felsic igneous rocks from the Ergun,Xing'an,and Songliao blocks.The absence of the Late Carboniferous strata in the Dashizhai Basin indicates an extension setting during this period.Furthermore,we suggest the Xing'an-Inner Mongolia Orogen was an uplifting process associated with evolution the Paleo-Asian Ocean during the Late Permian.展开更多
An enhanced understanding of the history of the western Qinling-Dabie orogen is pivotal in reconstructing geological processes of the east Asian mainland.However,less attention has been paid to its early-stage uplift-...An enhanced understanding of the history of the western Qinling-Dabie orogen is pivotal in reconstructing geological processes of the east Asian mainland.However,less attention has been paid to its early-stage uplift-erosion history after closure of surrounding oceanic basins at the mid-Paleozoic.In this study,we undertook a comprehensive study including paleocurrent reconstruction,sandstone petrology,and detrital zircon U-Pb dating on Late Carboniferous to Early Permian successions in the southern Ordos neighboring the northern Qinling-Dabie.New provenance data reveal a significant provenance shift at the Carboniferous-Permian transition.The older Benxi Formation was sourced southerly from the North Qinling Terrane that provided detritus mostly of Neoproterozoic and Early Paleozoic ages.In contrast,Early Permian samples yield age relation dominated by Neoarchean,Paleoproterozoic,Early Paleozoic,and Late Paleozoic age populations,with a significant gap of ca.1600-550 Ma,implying a sediment derivation from the Inner Mongolia Continental Arc.This shift is further verified by paleocurrent transition from south to north then.We suggest that the North Qinling Terrane experienced a significant uplift history from ca.500 Ma and remained as a highland until end-Carboniferous.From Early Permian,the North Qinling Terrane was submerged,covered by widespread deltaic sedimentation there.Northerly source from the Inner Mongolia Continental Arc began to be accumulated in the northern flank of the North Qinling Terrane,before termination approximately along the southern North Qinling Terrane,where shallow-water carbonate shelf sedimentation sustained from Devonian to Triassic.This new finding indicates that uplift of the North Qinling Terrane lasted about 150 Ma after the Proto-Tethys Ocean closure.展开更多
The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental colli...The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental collision processes driven by the Shangdan Ocean subduction-exhumation,which was a segment of the Proto-Tethys Ocean during the Early Paleozoic.Despite significant research,the Early Paleozoic tectonic background and subduction-related orogenic processes,particularly in the eastern NQLOB,remain subjects of debate.This study presents significant petrographic,geochemical,and geochronologic insights into the metavolcanic rocks of the Chenjiahe Group in the eastern NQLOB.Petrographic analysis reveals that these metavolcanic rocks originated in a low-grade metamorphic setting.Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb dating yielded ages ranging between 449.7-443.4 Ma,indicating Late Ordovician formation.Geochemical signatures of felsic and intermediate rocks exhibit calc-alkaline to high-K calc-alkaline similarities,characterized by high light rare earth elements(LREEs),low heavy rare earth elements(HREEs),and moderate Eu anomalies,consistent with a continental arc setting.In contrast,basaltic rocks display tholeiitic features with elevated large-ion lithophile elements(LILEs),reduced high-field-strength elements(HFSEs),and weak Eu anomalies,suggesting an extensional environment.These findings imply that the metavolcanic rocks evolved in a continental arc-back-arc extension setting connected with the northward subduction and exhumation of the Huluhe back-arc oceanic basin.This process was likely triggered by the northward subduction and closure of the Shangdan Ocean,culminating in the Late Ordovician amalgamation of the Qilian Block and the southwestern North China Block.This study provides critical insight into the tectonic development of the NQLOB and the broader Proto-Tethys Ocean dynamics at the northern periphery of the Eastern Gondwana.展开更多
The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion res...The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.展开更多
The architecture and geodynamics of intracontinental orogens remain a fundamental geological challenge.The Xing’an-Mongolia intracontinental orogenic belt(XMIOB),superimposed on the eastern Central Asian Orogenic Bel...The architecture and geodynamics of intracontinental orogens remain a fundamental geological challenge.The Xing’an-Mongolia intracontinental orogenic belt(XMIOB),superimposed on the eastern Central Asian Orogenic Belt(CAOB),provides key insights into intracontinental orogenic belt dynamics.However,its architecture,deformation patterns,and geodynamic processes are poorly understood.This study integrates geological mapping,structural analysis,EBSD quartz c-axis fabrics,seismic reflection interpretation,and zircon U-Pb geochronology to unravel the XMIOB’s tectonic evolution and compare it with global intracontinental orogenic belts.Our findings reveal that the XMIOB is shaped by alternating fold-thrust belts and metamorphic zones,dominantly controlled by the inversion of pre-existing extensional structures.EBSD analysis indicates mid-temperature(400℃–500℃)ductile deformation in the deep crust,while seismic profiles highlight structural decoupling driven by a décollement zone.Integrated crustal thickness reconstructions from zircon Eu/Eu*ratios delineate three tectonic stages:Late Carboniferous-Permian asthenospheric upwelling induced crustal thinning from∼50 km to∼35 km,forming lithospheric weak zones with Buchan-type metamorphism and bimodal magmatism;Late Permian-Middle Triassic mantle subduction triggered compressional thickening(∼55 km),fold-thrust belt formation,and tectonic inversion of early extensional faults,exposing metamorphic zones;from the Middle Triassic continued mantle subduction and deep-crustal decoupling drove large-scale lateral extrusion and dextral shear,reshaping the XMIOB architecture.Comparisons with global intracontinental orogenic belts highlight two key traits of intracontinental orogenic belt evolution:pre-orogenic lithospheric thinning generates inherited weak zones that localize subsequent deformation;inherited extensional features dictate the final architecture,producing the systematic alternation of metamorphic zones and fold–thrust belts.展开更多
The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically ass...The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.展开更多
0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previ...0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previous geochronological studies of the intrusions within this volcanic basin suggest that they primarily formed during the Silurian and Triassic periods(Dai et al.,2025;Sun et al.,2024;Wang et al.,2024;Zhu et al.,2022;Lei et al.,2021).展开更多
Structure and composition of Earth are fundamental importance in exploring the dynamic evolution of the crust and mantle.The Qinling Orogenic Belt(QOB)is located between the North China plate and the South China Plate...Structure and composition of Earth are fundamental importance in exploring the dynamic evolution of the crust and mantle.The Qinling Orogenic Belt(QOB)is located between the North China plate and the South China Plate,and is one of the main orogenic belts in China.To explore the composition and origin of anisotropy and the low wave velocity zone of the QOB,ten rock samples(gneiss and schist)were collected from the five sites of the QOB and the P-and S-wave velocities of these samples were measured under 0.6 to 2.0 GPa and 100 to 550℃.The wave velocities increase with increasing pressure and decreasing temperature.The V_(P)and V_(S)of the schist and gneiss match the velocity of the middle and lower crust of the QOB,indicating that schist and gneiss are important component of the QOB.All the schist and gneiss samples exhibit obvious seismic anisotropy with 1.64%-17.42%for V_(S)and 2.93%-14.78%for V_(P)under conditions of crust and upper mantle.The CPO/LPO and layering distribution of mica in rock samples are the main reasons for this anisotropy.The V_(S)structures below the five sampled sites from seismic ambient noise tomography were built to explore the effect of schist and gneiss on the composition and structure of the QOB.The results indicate that orientation-arranged gneiss and schist driven by the tectonic stresses might be a new origin of the character of V_(P)/V_(S),seismic anisotropy,and the low velocity zone in the QOB.展开更多
‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multipl...‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multiple and short-lived episodes of anatexis and metamorphism in deeplysubducted continental crusts.Dominated granitic gneisses in the deeply subducted continental crust undergoing considerable fluid-melt activities persist multistage growth of zircon.Therefore,a comparative study of SS-LASS and laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)zircon dating was conducted on the granitic gneisses from the Sulu belt in this study.Zircons mostly show a core-mantle-rim structure with CL-bright rims thinner than 5μm.For LA-ICP-MS dating,relict magmatic zircon cores yield protolith ages of ca.756-747 Ma;whereas the dark mantles record synexhumation anatexis at ca.214 Ma.By contrast,according to the U-Pb dates,trace element features,zircon crystallization temperatures and geological context,SS-LASS zircon petrochronology deciphers three episodes of anatectic events,as follows:(i)the first episode of anatexis at ca.218-217 Ma dominated by phengite-breakdown melting,likely facilitating the exhumation of the UHP slice from mantle depth;(ii)the second episode of anatexis at ca.193–191 Ma indicating part of northern Dabie-Sulu belt was still“hot”because of buried in the thickened orogenic crust at that time;(iii)the third episode of anatexis(ca.162–161 Ma)consistent with the intrusion ages(ca.161–141 Ma)of the Jurassic to Cretaceous granitoids in this orogen,suggesting the initial collapse of the orogenic root of the Sulu belt occurred at Late Jurassic due to the Izanagi plate initially subducting beneath the margin of Eastern Asia.This study sheds new light upon the utilization of SS-LASS petrochronology deciphering multiple anatectic events in the deeply-subducted continental crust and supports us in better understanding the tectonic evolution of Dabie-Sulu Orogen.展开更多
基金funded by the Regional Geological Survey Project of the China Geological Survey(DD20221646)the National Natural Science Foundation of China(42172218).
文摘The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guoda,nor intra-continental(or intraplate)orogenic belts generated by intraplate dynamics,as argued by some scholars-rather,they are superposed orogenic belts formed on the pre-existing continental crust in eastern China due to Mesozoic Paleo-Pacific dynamic system.In the past,these orogenic belts were called the marginal Pacific epicontinental activation belts of eastern China.In the Mesozoic,under the effect of Paleo-Pacific dynamic system,the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin(Russia)-Japan-Ryukyu-Taiwan(China)-Palawan(Philippines)regions,while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin.The two orogenic systems,both driven by Mesozoic Paleo-Pacific dynamic system,developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia,radically changing the pre-Indosian tectonic framework of the area.
基金supported by the National Key Research and Development Project(No.2022YFC2903302)the Second Tibet Plateau Scientific Expedition and Research Program(STEP),(No.2019QZKK0802)+2 种基金the National Natural Science Foundation of China(No.42361144841)the Chinese Academy of Geological Sciences Basal Research Fund(No.JKYZD202402)the Scientific Research Fund Project of BGRIMM Technology Group(No.JTKY202427822)。
文摘0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).
基金supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government’s Cooperative Research Centre Program.This is MinEx CRC Document 2025/06.
文摘The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Amadeus Basin.Several studies have investigated the metamorphic and deformational evolution of the Petermann Orogen;however,the spatiotemporal variation of the deformation and cooling history is yet to be fully understood.In situ muscovite and biotite Rb-Sr geochronology,in combination with Ti-in-quartz thermometry is applied to map the spatiotemporal deformation and cooling patterns of the northern part of the Petermann Orogen.Interpreted muscovite Rb-Sr growth ages obtained from samples in the Petermann Nappe Complex(PNC),range between c.598 Ma and 565 Ma,which correlate with the timing of deformation during the 600-520 Ma Petermann Orogeny.Interpreted muscovite and biotite cooling ages are younger in the east of the PNC(c.556-541 Ma)and broadly correlate with the regional pattern of crustal heat production,suggesting that the geothermal gradient had a significant control on the timing and duration of cooling.Biotite Rb-Sr cooling ages between c.555 Ma and 497 Ma for the orogenic core show no correlation with high heat production areas,however,differences in exhumed crustal levels across the Petermann Orogen are observed:high-P granulite facies rocks in the orogenic core vs middle-upper crustal rocks in the PNC,indicating that at least part of the spatiotemporal variation of cooling ages can be attributed to differential exhumation during the Petermann Orogeny.Hence,crustal heat production and differential exhumation were likely the main controlling factors on the duration and variation of cooling rates in the Petermann Orogen.
基金funded by the National Natural Science Foundation of China(No.42130309)China Geological Survey(Nos.DD20160030,DD20190050)。
文摘A cluster of serpentinite bodies has been recognized tectonically emplaced within the greenschist-amphibolite-facies metamorphic terrane in Hong'an,western Dabie orogen,central China.Two types of serpentinites are identified on the basis of integrated petrographic,mineralogical and geochemical study.The first type,represented by Yinshanzhai serpentinite complex(Group 1)comprises heterogeneous lithology as a massive serpentinite matrix“intruded”by antigoriteenriched serpentinite lenses.They are both pseudomorphic textured with different mineral assemblages indicating an increasing temperature-pressure condition.Serpentinite matrix(Group 1a)is chemically characterized by high MgO/SiO_(2)and low Al_(2)O_(3)/SiO_(2),Ti and Ca contents,suggesting a depleted mantle wedge origin.The coexistence of compositionally-heterogeneous chromite with highCr^(#)(0.78-0.96)and intermediate-Cr^(#)(0.59-0.70)pristine cores indicates extensive mantle melting.Meanwhile,extremely high Fo olivine relicts(96-97)with considerably higher MnO and lower NiO contents than mantle olivine indicate that they are metamorphic products from serpentine decomposition.Accordingly,we propose that Yinshanzhai serpentinite complex experienced two distinct episodes of hydration.The serpentinite lenses(Group 1b)show higher SiO_(2)and lower MgO concentrations.Nevertheless,the trace elements of groups 1a and 1b are consistent:U-shaped REE patterns,positive Eu anomalies and enrichment of LILE(i.e.,Cs,U)are all identified as forearc properties.They are affected by reducing slab-derived fluids in forearc mantle,with f_(O2)of 1 to 2 logarithmic units below f_(O2)of fayalite-magnetite-quartz buffer(FMQ-2~FMQ-1).The second type is antigorite-serpentinites(Group2)represented by Ximaoshan and Wangchunwan blocks.They are non-pseudomorphic,with no primary framework silicate surviving.Fertile compositions(i.e.,higher Al_(2)O_(3)and Al_(2)O_(3)/SiO_(2),nearly flat REE patterns)and conjoint enrichment of LILE with HFSE suggest melt/rock interaction.Negative Ce,Eu anomalies,and enriched U relative to alkaline elements demonstrate interactions with more oxidized seawater or seafloor fluids(FMQ~FMQ-1).Remarkable Sr negative anomalies may be attributed to Sr release during lizardite/antigorite transition in subduction zone,indicating interaction with low-Sr slab fluids.We propose that Group 2 serpentinites originate either from mantle wedge or abyssal peridotites,refertilized by mantle melts,then hydrated in seafloor or shallow forearc and entrapped into subduction channel.Combined with geochronology and tectonic constraints of associated eclogites in Hong'an terrane,the two types of serpentinites may correlate with subduction of different oceanic basins during the late Paleozoic and/or Proterozoic eras.It raises possibility of defining an ophiolitic setting in Hong'an Orogen for which further evidence is required.
基金supported by the National Science and Technology Major Project(No.2024ZD1001005)the National Natural Science Foundation of China(No.42172103)+2 种基金the Natural Science Foundation of Hubei Province(Nos.2023AFD206,2024AFD401,2025AFD439,2025AFD452)the Research Fund Program of Hubei Key Laboratory of Resources and Eco-Environment Geology(Nos.HBREGKFJJ-202302,HBREGKFJJ-202402)the State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR202424)。
文摘Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.
基金supported by the Qinghai Provincial Special Fund for Geological Exploration-Deep Mineral Exploration Breakthrough Demonstration Project in Key Ore Concentration Areas of Qinghai Province(No.2023085029ky004)New Round of National Strategic Action for Mineral Exploration Breakthrough-Research and Demonstration of Air-Ground Collaborative Efficient Technologies for Copper-Nickel Sulfide Deposits in the East Kunlun Plateau Desert Region(No.ZKKJ202416)+1 种基金National Key R&D Program of China-Novel Geochemical Exploration Technologies for Desert Gobi and Alpine Grassland Shallow Overburden Terrains(No.2024ZD1002403)Kunlun Talent Program of Qinghai Province jointly support。
文摘A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.
基金funded by the China Postdoctoral Science Foundation(Grant No.2019M663959XB)the Geological Survey and Development Bureau of Qinghai Province 2019 Geological Survey Project(2019[45])the Key Laboratory of Deep Dynamics of the Ministry of Natural Resources,Open Research Project 2019。
文摘In the western segment of the East Kunlun Orogen(WEKO),muscovite granite and garnet granite from the Hureguole intrusion exhibit zircon U-Pb ages of 435-442 Ma.Geochemically,these rocks contain high concentrations of SiO_(2),K_(2)O and Al_(2)O_(3),with low concentrations of TiO_(2)and MgO,indicating a peraluminous high-K calc-alkaline affinity.They are enriched in Rb,Th,U and LREE,depleted in Eu,Ba,Sr and Ti,being classified as S-type granites.Negative whole-rockε_(Nd)(t)values(-9.8 to-9.1)and zirconε_(Hf)(t)values(-11.6 to-8.2)for those granites indicate that they were derived from partial melting of pelitic rocks in the Paleoproterozoic Baishahe Formation of the Jinshuikou Group.Based on the collected zircon ages,Cambrian-Devonian magmatic activity in the WEKO was divided into three stages:early(446-520 Ma),middle(427-441 Ma)and late(372-424 Ma)stages.Statistically,whole-rock Nd and zircon Hf isotope data(ε_(Nd)(t)/T_(DM)^(Nd),ε_(Hf)(t)/T_(DMC)^(Hf))from Paleozoic igneous rocks in the WEKO reveal a magma source that was initially dominated by depleted mantle components in the northward subduction stage of the Proto-Tethy an Ocean plate(446-520 Ma),shifting to predominantly crustal sources during the closure period of the North Qimantagh back-arc basin(427-441 Ma),then to crust-mantle mixed sources in the post-collision stage(372-424 Ma).
基金funded by the National Natural Science Foundation of China(42263006)Open Fund from the Jiangxi Province,China(Grant No.20224ACB203011 and 2020101003)East China University of Technology(DHYC-202401 and 1410000874).
文摘Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.
基金financially supported by the National Major Science and Technology Project of China(No.2016ZX05004-004)the State Scholarship Grant from the China Scholarship Council(CSC)to Yinggang Zhang。
文摘The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB.Sedimentary rocks in the WKOB received little attention in the past;however,they could provide important constraints on the evolution of the oceanic lithosphere.Here,a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their deposition ages and explore their significance in the evolution of the ProtoTethys oceanic crust.The U-Pb dating and europium anomaly(Eu/Eu^(*))were analyzed for detrital zircons from greywackes interlayers,while bulk rare earth elements and yttrium(REY)of the shales were measured.Detrital zircons U-Pb ages yield a maximum deposition age of 436 Ma for the greywackes and black shales,while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales.Accordingly,the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician-Early Silurian period.The maximum deposition age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean,which is also supported by the absence of increases in Eu/Eu^(*)values during the Late Ordovician-Early Silurian.Besides,our Eu/Eu^(*)values in detrital zircons indicate diminished orogenesis during the Archean to Meso-Proterozoic,subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.
基金financially supported by the National Key Research and Development Program(Grant No.2021YFC2901802)the Shaanxi Province Natural Science Foundation(Grant No.2020JM-310)+2 种基金the Hong Kong RGC Co-funding Mechanism on Joint Laboratories with the Chinese Academy of Science(JLFS/P-702/24)the National Key R&D Program of China(Grant Nos.2018YFC0604000,2017YFC0601205)the National Natural Science Foundation of China(Grant Nos.41730213,42072264,41902229,41972237).
文摘As a highly coupled aggregate of tectonism,magmatism,and metamorphism,a gneiss dome is usually taken as a vital window for understanding the crustal internal structure and the exchange of material and energy during orogenic exhumation.The Qinghe gneiss dome located in the eastern Chinese Altai orogen,lies in Qinghe County,Xinjiang,records important information of late accretionary orogeny associated with continental uplift and crustal growth.According to the field investigation,the dome shows core-mantle-margin domains,in which the core is composed of migmatized granite and gneiss,the mantle consists of banded gneiss,schist,and leptynite,and the margin has rock assemblages of phyllite,schist,and meta-sandstone.From the margin to the core,the dome can be divided into chlorite-sericite,andalusite-staurolite,sillimanite-biotite,and sillimanite-garnet metamorphic zones,recording progressive metamorphism.Detailed structural analyses in the Qinghe gneiss dome indicate progressive deformation from the margin to the core.Internal and external detachment faults are clarified,with the former characterized by inflow and outward migration of crustal material and the latter marked by brittle-ductile deformation with a lineation indicating lateral slip of the upper wall when the dome uplifted.Based on these faults,upper,middle,lower structural layers are observed from the outer to inner domains of the dome.Considering the general geological background and new data,the Qinghe gneiss dome probably predominantly underwent early ductile shear deformation and late heat-flow diapirism in the early Permian,closely related to upwelling of asthenosphere mantle that resulted from slab break-off in the extensional tectonic setting.
基金financially supported by the Geological Survey of China(Grant Nos.DD20240075,and DD20243516)the National Natural Science Foundation of China(Grant No.41872209)Basic Scientific Research Fund of the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J2314)。
文摘We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and geochemical data,the granitoids in the region can be divided into two age groups:ca.285 Ma and ca.269 Ma.The granitoids of the first group are mainly composed of calc-alkaline to high-K calc-alkaline,weakly peraluminous Ⅰ-type granodiorites with ε_(Hf)(t)values of-19.6 to-4.3,which demonstrates evidence of crustal reworking;the granitoids of the second group,however,mainly consist of A-type granites that are high-K calc-alkaline to shoshonite,metaluminous to weakly peraluminous,and have high 10,000×Ga/Al ratios(2.59-3.12)and ε_(Hf)(t)values ranging from-11.3 to-2.7,all of which demonstrates a mixed crust-mantle source.We interpret the granitoids of the first group to have formed during the subduction of Central Asian oceanic crust and the second group to have formed by the asthenospheric upwelling caused by the formation of slab windows during late ocean ridge subduction.
基金the National Natural Science Foundation of China(No.41872232)。
文摘The Xing'an-Inner Mongolia Orogen is a critical tectonic unit for constraining the evolution of the Paleo-Asian Ocean.However,the location and time of the closure of the Paleo-Asian Ocean are still debated.Here,we select a representative basin in Dashizhai in northeastern China,using U-Pb zircon geochronology and geochemistry to analyze the sedimentary facies,depositional ages,and provenance.The results show that the ages of the Dashizhai Formation range from 400 to 347 Ma,the Shoushangou Formation range from 400 to 348 Ma,the Zhesi Formation range from 307 to 252 Ma,and the Linxi Formation range from 299 to 241 Ma.The Dashizhai Formation is composed of metamorphic andesite and clastic rocks.The Shoushangou Formation comprises siltstone,rhyolite,and argillaceous siltstone.The Zhesi and Linxi Formations are composed of mudstone and argillaceous siltstone.Geochemical data shows that these rocks are enriched in light rare earth elements and depleted in Eu with various La/Sc,Th/Sc,and La/Co ratios.The Permian Dashizhai Basin is from Permian volcanic and felsic igneous rocks from the Ergun,Xing'an,and Songliao blocks.The absence of the Late Carboniferous strata in the Dashizhai Basin indicates an extension setting during this period.Furthermore,we suggest the Xing'an-Inner Mongolia Orogen was an uplifting process associated with evolution the Paleo-Asian Ocean during the Late Permian.
基金the National Natural Science Foundation of China(Grant Nos:42372253 and 42072260)the Youth Innovation Team of Shaanxi Universitiesthe Science and Technology Project of PetroChina(No.2023ZZ0201).
文摘An enhanced understanding of the history of the western Qinling-Dabie orogen is pivotal in reconstructing geological processes of the east Asian mainland.However,less attention has been paid to its early-stage uplift-erosion history after closure of surrounding oceanic basins at the mid-Paleozoic.In this study,we undertook a comprehensive study including paleocurrent reconstruction,sandstone petrology,and detrital zircon U-Pb dating on Late Carboniferous to Early Permian successions in the southern Ordos neighboring the northern Qinling-Dabie.New provenance data reveal a significant provenance shift at the Carboniferous-Permian transition.The older Benxi Formation was sourced southerly from the North Qinling Terrane that provided detritus mostly of Neoproterozoic and Early Paleozoic ages.In contrast,Early Permian samples yield age relation dominated by Neoarchean,Paleoproterozoic,Early Paleozoic,and Late Paleozoic age populations,with a significant gap of ca.1600-550 Ma,implying a sediment derivation from the Inner Mongolia Continental Arc.This shift is further verified by paleocurrent transition from south to north then.We suggest that the North Qinling Terrane experienced a significant uplift history from ca.500 Ma and remained as a highland until end-Carboniferous.From Early Permian,the North Qinling Terrane was submerged,covered by widespread deltaic sedimentation there.Northerly source from the Inner Mongolia Continental Arc began to be accumulated in the northern flank of the North Qinling Terrane,before termination approximately along the southern North Qinling Terrane,where shallow-water carbonate shelf sedimentation sustained from Devonian to Triassic.This new finding indicates that uplift of the North Qinling Terrane lasted about 150 Ma after the Proto-Tethys Ocean closure.
基金supported by the National Nature Science Foundation of China (Grant Nos. 41872235, 42172236, and 41872233)Double First-Class University Construction Special Project of Shaanxi (Grant No. 300111240014)+1 种基金the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds for the Central Universities of China (Grant Nos. 300102270202, 202110710062, 300103183081, 300108231154, S202410710285, and 300102274808)
文摘The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental collision processes driven by the Shangdan Ocean subduction-exhumation,which was a segment of the Proto-Tethys Ocean during the Early Paleozoic.Despite significant research,the Early Paleozoic tectonic background and subduction-related orogenic processes,particularly in the eastern NQLOB,remain subjects of debate.This study presents significant petrographic,geochemical,and geochronologic insights into the metavolcanic rocks of the Chenjiahe Group in the eastern NQLOB.Petrographic analysis reveals that these metavolcanic rocks originated in a low-grade metamorphic setting.Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb dating yielded ages ranging between 449.7-443.4 Ma,indicating Late Ordovician formation.Geochemical signatures of felsic and intermediate rocks exhibit calc-alkaline to high-K calc-alkaline similarities,characterized by high light rare earth elements(LREEs),low heavy rare earth elements(HREEs),and moderate Eu anomalies,consistent with a continental arc setting.In contrast,basaltic rocks display tholeiitic features with elevated large-ion lithophile elements(LILEs),reduced high-field-strength elements(HFSEs),and weak Eu anomalies,suggesting an extensional environment.These findings imply that the metavolcanic rocks evolved in a continental arc-back-arc extension setting connected with the northward subduction and exhumation of the Huluhe back-arc oceanic basin.This process was likely triggered by the northward subduction and closure of the Shangdan Ocean,culminating in the Late Ordovician amalgamation of the Qilian Block and the southwestern North China Block.This study provides critical insight into the tectonic development of the NQLOB and the broader Proto-Tethys Ocean dynamics at the northern periphery of the Eastern Gondwana.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0602704)the National Natural Science Foundation of China(Grant No.U20B6001 and 91755211).
文摘The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.
基金supports from National Natural Science Foundation of China,China(Grant Nos.42042029,42172248)the Department of Education of Hebei Province,China(Grant No.QN2024174)the Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources,China(Grant Nos.HGU-SCMR2439,HGU-SCMR2440).
文摘The architecture and geodynamics of intracontinental orogens remain a fundamental geological challenge.The Xing’an-Mongolia intracontinental orogenic belt(XMIOB),superimposed on the eastern Central Asian Orogenic Belt(CAOB),provides key insights into intracontinental orogenic belt dynamics.However,its architecture,deformation patterns,and geodynamic processes are poorly understood.This study integrates geological mapping,structural analysis,EBSD quartz c-axis fabrics,seismic reflection interpretation,and zircon U-Pb geochronology to unravel the XMIOB’s tectonic evolution and compare it with global intracontinental orogenic belts.Our findings reveal that the XMIOB is shaped by alternating fold-thrust belts and metamorphic zones,dominantly controlled by the inversion of pre-existing extensional structures.EBSD analysis indicates mid-temperature(400℃–500℃)ductile deformation in the deep crust,while seismic profiles highlight structural decoupling driven by a décollement zone.Integrated crustal thickness reconstructions from zircon Eu/Eu*ratios delineate three tectonic stages:Late Carboniferous-Permian asthenospheric upwelling induced crustal thinning from∼50 km to∼35 km,forming lithospheric weak zones with Buchan-type metamorphism and bimodal magmatism;Late Permian-Middle Triassic mantle subduction triggered compressional thickening(∼55 km),fold-thrust belt formation,and tectonic inversion of early extensional faults,exposing metamorphic zones;from the Middle Triassic continued mantle subduction and deep-crustal decoupling drove large-scale lateral extrusion and dextral shear,reshaping the XMIOB architecture.Comparisons with global intracontinental orogenic belts highlight two key traits of intracontinental orogenic belt evolution:pre-orogenic lithospheric thinning generates inherited weak zones that localize subsequent deformation;inherited extensional features dictate the final architecture,producing the systematic alternation of metamorphic zones and fold–thrust belts.
基金funded by the National Natural Science Foundation of China(42125203,42330809)the 111 project of the Ministry of Science and Technology(BP0719021).
文摘The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.
基金financially supported by projects from the National Natural Science Foundation of China(No.42321001)the Qinghai Provincial Department of Science and Technology Key R&D Project(No.2025-SF-141)+1 种基金the Qinghai“Kunlun Talent”Program(Qing RC Talent Zi(2024)No.1)the Academician Zhao Pengda Innovation Center in Qinghai Geological Bureau of Nuclear Industry。
文摘0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previous geochronological studies of the intrusions within this volcanic basin suggest that they primarily formed during the Silurian and Triassic periods(Dai et al.,2025;Sun et al.,2024;Wang et al.,2024;Zhu et al.,2022;Lei et al.,2021).
基金supported by the National Natural Science Foundation of China(42174115 and 42330311)the Special Fund of the Institute of Earthquake Forecasting,China Earthquake Administration(CEAIEF20230301)the State key laboratory of earthquake dynamics(LED2021B02).
文摘Structure and composition of Earth are fundamental importance in exploring the dynamic evolution of the crust and mantle.The Qinling Orogenic Belt(QOB)is located between the North China plate and the South China Plate,and is one of the main orogenic belts in China.To explore the composition and origin of anisotropy and the low wave velocity zone of the QOB,ten rock samples(gneiss and schist)were collected from the five sites of the QOB and the P-and S-wave velocities of these samples were measured under 0.6 to 2.0 GPa and 100 to 550℃.The wave velocities increase with increasing pressure and decreasing temperature.The V_(P)and V_(S)of the schist and gneiss match the velocity of the middle and lower crust of the QOB,indicating that schist and gneiss are important component of the QOB.All the schist and gneiss samples exhibit obvious seismic anisotropy with 1.64%-17.42%for V_(S)and 2.93%-14.78%for V_(P)under conditions of crust and upper mantle.The CPO/LPO and layering distribution of mica in rock samples are the main reasons for this anisotropy.The V_(S)structures below the five sampled sites from seismic ambient noise tomography were built to explore the effect of schist and gneiss on the composition and structure of the QOB.The results indicate that orientation-arranged gneiss and schist driven by the tectonic stresses might be a new origin of the character of V_(P)/V_(S),seismic anisotropy,and the low velocity zone in the QOB.
基金supported by National Natural Science Foundation of China(Nos.42072228,42102060,41902036,41572182)China Postdoctoral Science Foundation(No.2021M692983)+4 种基金the Chinese Ministry of Education(No.BP0719022)the Most Special Fund(Nos.MSFGPMR02-3,MSFGPMR30)Open funds from the State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences(Nos.GPMR201703,GPMR201704 and GPMR201903)the Fundamental Research Funds for National University(No.CUG-G1323511572)。
文摘‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multiple and short-lived episodes of anatexis and metamorphism in deeplysubducted continental crusts.Dominated granitic gneisses in the deeply subducted continental crust undergoing considerable fluid-melt activities persist multistage growth of zircon.Therefore,a comparative study of SS-LASS and laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)zircon dating was conducted on the granitic gneisses from the Sulu belt in this study.Zircons mostly show a core-mantle-rim structure with CL-bright rims thinner than 5μm.For LA-ICP-MS dating,relict magmatic zircon cores yield protolith ages of ca.756-747 Ma;whereas the dark mantles record synexhumation anatexis at ca.214 Ma.By contrast,according to the U-Pb dates,trace element features,zircon crystallization temperatures and geological context,SS-LASS zircon petrochronology deciphers three episodes of anatectic events,as follows:(i)the first episode of anatexis at ca.218-217 Ma dominated by phengite-breakdown melting,likely facilitating the exhumation of the UHP slice from mantle depth;(ii)the second episode of anatexis at ca.193–191 Ma indicating part of northern Dabie-Sulu belt was still“hot”because of buried in the thickened orogenic crust at that time;(iii)the third episode of anatexis(ca.162–161 Ma)consistent with the intrusion ages(ca.161–141 Ma)of the Jurassic to Cretaceous granitoids in this orogen,suggesting the initial collapse of the orogenic root of the Sulu belt occurred at Late Jurassic due to the Izanagi plate initially subducting beneath the margin of Eastern Asia.This study sheds new light upon the utilization of SS-LASS petrochronology deciphering multiple anatectic events in the deeply-subducted continental crust and supports us in better understanding the tectonic evolution of Dabie-Sulu Orogen.