Organic phosphate biomolecules(OPBs) are indispensable components of eukaryotes and prokaryotes,such as acting as the fundamental components of cell membranes and important substrates for nucleic acids. They play pivo...Organic phosphate biomolecules(OPBs) are indispensable components of eukaryotes and prokaryotes,such as acting as the fundamental components of cell membranes and important substrates for nucleic acids. They play pivotal roles in various biological processes, such as energy conservation, metabolism,and signal modulation. Due to the difficulty of detection caused by variety OPBs, investigation of their respective physiological effects in organisms has been restrained by the lack of efficient tools. Many small fluorescent probes have been employed for selective detection and monitoring of OPBs in vitro or in vivo due to the advantages of tailored properties, biodegradability and in situ high temporal and spatial resolution imaging. In this review, we summarize the recent advances in fluorescent probes for OPBs,such as nucleotides, NAD(P)H, FAD/FMN and PS. Importantly, we describe their identification mechanisms in detail and discuss the general strategies for these OPBs probe designs, which provide new insights and ideas for the future probe designs.展开更多
The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the mult...The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.展开更多
基金financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21622504, 21735001, and 21877029)the Science and Technology Project of Hunan Province (No. 2017RS3019)the Open Funding Project of the State Key Laboratory of Bioreactor Engineering
文摘Organic phosphate biomolecules(OPBs) are indispensable components of eukaryotes and prokaryotes,such as acting as the fundamental components of cell membranes and important substrates for nucleic acids. They play pivotal roles in various biological processes, such as energy conservation, metabolism,and signal modulation. Due to the difficulty of detection caused by variety OPBs, investigation of their respective physiological effects in organisms has been restrained by the lack of efficient tools. Many small fluorescent probes have been employed for selective detection and monitoring of OPBs in vitro or in vivo due to the advantages of tailored properties, biodegradability and in situ high temporal and spatial resolution imaging. In this review, we summarize the recent advances in fluorescent probes for OPBs,such as nucleotides, NAD(P)H, FAD/FMN and PS. Importantly, we describe their identification mechanisms in detail and discuss the general strategies for these OPBs probe designs, which provide new insights and ideas for the future probe designs.
基金supported by the National Natural Science Foundation of China under Grant No.61806138KeyR&DProgram of Shanxi Province(International Cooperation)under Grant No.201903D421048+1 种基金National Key Research and Development Program of China under Grant No.2018YFC1604000School Level Postgraduate Education Innovation Projects under Grant No.XCX212082.
文摘The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.