The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly ...The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly favorable due to its retrofit viability.This review analyzes advancements in chemical absorption technologies specific to shipborne applications,focusing on absorbent development,absorption tower optimization,and system integration.This article begins with an overview of OCC principles and advantages,followed by a discussion of technological progress,including feasibility studies and project outcomes.It explores various chemical absorbents,assessing performance,degradation,and emissions.The structural configurations of absorption towers and their modeling techniques are examined,alongside challenges such as limited vessel space,energy constraints,and gas-liquid distribution inefficiencies.Future directions emphasize the need for innovative absorbent designs,advanced simulation for tower optimization,and enhanced integration with ship energy systems,including renewable energy and waste heat recovery.The potential for intelligent technologies to enable real-time monitoring and automated management of carbon capture systems is highlighted.Finally,further investigations into fundamental interfaces and reaction kinetics are essential for advancing shipborne carbon capture technologies,providing a crucial reference for researchers and practitioners in the field.展开更多
基金supported by the National Natural Science Foundation of China(51876118)。
文摘The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly favorable due to its retrofit viability.This review analyzes advancements in chemical absorption technologies specific to shipborne applications,focusing on absorbent development,absorption tower optimization,and system integration.This article begins with an overview of OCC principles and advantages,followed by a discussion of technological progress,including feasibility studies and project outcomes.It explores various chemical absorbents,assessing performance,degradation,and emissions.The structural configurations of absorption towers and their modeling techniques are examined,alongside challenges such as limited vessel space,energy constraints,and gas-liquid distribution inefficiencies.Future directions emphasize the need for innovative absorbent designs,advanced simulation for tower optimization,and enhanced integration with ship energy systems,including renewable energy and waste heat recovery.The potential for intelligent technologies to enable real-time monitoring and automated management of carbon capture systems is highlighted.Finally,further investigations into fundamental interfaces and reaction kinetics are essential for advancing shipborne carbon capture technologies,providing a crucial reference for researchers and practitioners in the field.