The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals i...The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated,the intimate relationship between the central nervous system and bone remains less understood,yet it has emerged as a hot topic in the bone field.In this review,we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism,either intact or after injury.First,we explored mechanistic studies linking specific brain nuclei with bone homeostasis,including the ventromedial hypothalamus,arcuate nucleus,paraventricular hypothalamic nucleus,amygdala,and locus coeruleus.We then focused on the characteristics of bone innervation and nerve subtypes,such as sensory,sympathetic,and parasympathetic nerves.Moreover,we summarized the molecular features and regulatory functions of these nerves.Finally,we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration.Therefore,considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process,ultimately benefiting future clinical translation.展开更多
近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线...近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线发表在国际权威期刊《IEEE Transactions on Image Processing》(中科院一区TOP,CCF-A类期刊,IF=10.8)和以题为“SimCMC:A Simple Compact Multiview Contrastive Framework for Self-supervised Early Alzheimer’s Disease Diagnosis”的论文在线发表在国际权威期刊《IEEE Transactions on Instrumentation and Measurement》(中科院二区TOP,IF=5.6)。展开更多
In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a...In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a laser field modulates theαdecay half-life by altering theαdecay penetration probability within a limited range.Moreover,the variance in the penetration probability rate of change between even–odd and odd–even nuclei is investigated.Furthermore,we investigate the rate of change of the penetration probability for the same parent nucleus with different neutron numbers,based on the characteristics of the odd-A nucleus.We found that the influence of the laser field on the penetration probability is determined by both the shell effect and odd–even staggering.This research contributes to the understanding of nuanced interactions between laser fields and nuclear decay processes.Therefore,valuable insights for future experiments in laser–nuclear physics are attainable using this study.展开更多
Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting pl...Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting play an important role in cancer identification and its grading.In this study,WaveSeg-UNet,a lightweight model,is introduced to segment cancerous nuclei having touching boundaries.Residual blocks are used for feature extraction.Only one feature extractor block is used in each level of the encoder and decoder.Normally,images degrade quality and lose important information during down-sampling.To overcome this loss,discrete wavelet transform(DWT)alongside maxpooling is used in the down-sampling process.Inverse DWT is used to regenerate original images during up-sampling.In the bottleneck of the proposed model,atrous spatial channel pyramid pooling(ASCPP)is used to extract effective high-level features.The ASCPP is the modified pyramid pooling having atrous layers to increase the area of the receptive field.Spatial and channel-based attention are used to focus on the location and class of the identified objects.Finally,watershed transform is used as a post processing technique to identify and refine touching boundaries of nuclei.Nuclei are identified and counted to facilitate pathologists.The same domain of transfer learning is used to retrain the model for domain adaptability.Results of the proposed model are compared with state-of-the-art models,and it outperformed the existing studies.展开更多
To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of t...To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of the RWA formalism.The total wave functions were obtained using the generator coordinate method with microscopic cluster wave functions.Based on these wave functions,we calculated the overlap amplitudes to extract the relative motion and spatial correlations between clusters.The computed energy spectra showed reasonable agreement with the experimental data,emphasizing the effectiveness of the present framework for investigating dinucleon correlations in light nuclei.Our results revealed the presence of both dinucleon-like and cigar-like configurations in the ground states of^(6)He and^(6)Be,indicating a coexistence of compact and extended cluster structures.Furthermore,the 2_(1)^(+)state of^(6)He revealed a pronounced dineutron structure,with strong spatial correlations between the two valence neutrons.We also performed calculations for the higher-lying 2_(1)^(+)state,which showed a more spatially extended structure and provided potential references for future experimental investigations.These findings demonstrated that the TCOA method served as a powerful tool to explore cluster dynamics and dinucleon features in light,weakly bound nuclear systems.展开更多
The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb e...The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb energy heightened by an aug-mented charge could not be mitigated completely by symmetry energy because of isospin asymmetry saturation but is resisted complementally by strong nuclear deformation.The positions of saltation for the difference in proton numbers between two neighboring nuclei at the neutron drip line,and the isospin asymmetry of the neutron drip-line nucleus as a function of the neutron number distinctly correspond to the known magic numbers,which can serve as a reference to verify the undeter-mined neutron magic number.Through fitting of the binding energy difference between mirror nuclei(BEDbMN),a set of Coulomb energy coefficients with greater accuracy is obtained.A high-precision description of the BEDbMN is useful for accurately determining the experimentally unknown mass of the nucleus close to the proton drip line if the mass of its mirror nucleus is measured experimentally.展开更多
An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 an...An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 and FRDM models in the improved formula,the root mean square deviation(RMSD)between the calculated results and experimental data decreased from 0.456 to 0.413 and 0.415,respectively.Although the improved formula did not significantly reduce the overall RMSD,it produced results that better matched the experimental values for nuclei with larger deformations.Additionally,eXtreme Gradient Boosting(XGBoost)models were employed to further reduce the deviations between the calculated α-decay half-lives and experimental data,with the corresponding RMSDs decreasing from 0.413 to 0.295 and from 0.415 to 0.302,respectively.Furthermore,the improved empirical formula and XGBoost models were used to predict the α-decay half-lives of nuclei with Z=117,118,119,and 120.The results suggest that N=184 is the magic number.展开更多
A new detector array with a large solid angle coverage for the coincidence measurement of charged fragments was developed to study the breakup reaction mechanisms of weakly bound nuclear systems at energies around the...A new detector array with a large solid angle coverage for the coincidence measurement of charged fragments was developed to study the breakup reaction mechanisms of weakly bound nuclear systems at energies around the Coulomb barrier.The array has been used to explore the breakup reaction mechanisms of^(6,7)Li+^(209)Bi systems at E_(beam)=30,40,47 MeV,showing good performance in particle identification and complete kinematic measurements.Based on this,different breakup modes and breakup components were clearly distinguished,and some new breakup modes were discovered,such as^(7)Li→α+t breakup mode in6Li+209Bi system and^(7)Li→^(6)He+p breakup mode in^(7)Li+^(209)Bi system.This array can also be used to explore other breakup reaction mechanisms induced by weakly bound nuclei.展开更多
Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier...Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nucle...By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.展开更多
A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points...A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.展开更多
A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yie...A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.展开更多
The^(6)Li+^(89)Y experiment was performed to explore the reaction mechanism induced by a weakly bound nucleus^(6)Li and its cluster configuration.The particle-γcoincidence method was used to identify the different re...The^(6)Li+^(89)Y experiment was performed to explore the reaction mechanism induced by a weakly bound nucleus^(6)Li and its cluster configuration.The particle-γcoincidence method was used to identify the different reaction channels.Theγ-rays coincident with^(3)He/^(3)H indicate that the^(3)H/^(3)He stripping reaction plays a significant role in the formation of Zr/Nb isotopes.The obtained results support the existence of a^(3)He-^(3)H cluster in^(6)Li.Direct and sequential transfer reactions are adequately discussed,and the FRESCO code is used to perform precise finite-range cyclic redundancy check calculations.In the microscopic calculation,direct cluster transfer is more predominant than sequential transfer in^(3)H transfer.However,the direct cluster transfer is of comparable magnitude to the sequential transfer in the^(3)He transfer.展开更多
We assess the detectability of tidal disruption events(TDEs)using mock observations from the Mini-SiTian Array.We select 100 host galaxy samples from a simulated galaxy catalog based on specific criteria such as redsh...We assess the detectability of tidal disruption events(TDEs)using mock observations from the Mini-SiTian Array.We select 100 host galaxy samples from a simulated galaxy catalog based on specific criteria such as redshift,black hole mass,and event rate.Taking into account the site conditions and survey strategy,we simulate observations over a 440 deg^(2)field.The results indicate that 0.53±0.73 TDEs can be detected per year when observing in both g and r bands with 300 s exposures every 3 days.Applying this method to the SiTian project,we expect to discover approximately 204 TDEs annually,heralding a new era in TDE science.展开更多
In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Therm...In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Thermal-FIST thermodynamic statistical model,we analyzed various particle sets:those inclusive of light nuclei,those exclusive to light nuclei,and those solely comprising light nuclei.We determined the chemical freeze-out parameters at√^(S)NN=7.7–200 Ge V and four different centralities.A significant finding was the decrease in the chemical freeze-out temperature T_(ch)with light-nuclei inclusion,with an even more pronounced reduction when considering light-nuclei yields exclusively.This suggests that light-nuclei formation occurs at a later stage in the system’s evolution at RHIC energies.We present parameterized formulas that describe the energy dependence of T_(ch)and the baryon chemical potentialμ_(B) for three distinct particle sets in central Au+Au collisions at RHIC energies.Our results reveal at least three distinct T_(ch)at RHIC energies correspond to different freeze-out hypersurfaces:a light-flavor freeze-out temperature of T_L=150.2±6 Me V,a strange-flavor freeze-out temperature T_s=165.1±2.7 Me V,and a light-nuclei freeze-out temperature T_(ln)=141.7±1.4 Me V.Notably,at the Large Hadron Collider(LHC)Pb+Pb 2.76Te V,the expected lower freeze-out temperature for light nuclei was not observed;instead,the T_(ch)for light nuclei was found to be approximately 10 Me V higher than that for light-flavor hadrons.展开更多
Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ...Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.展开更多
The synthesis of superheavy nuclei remains a critical area of research in nuclear physics,with the aim of extending the periodic table and deepening our understanding of the properties of nuclei.This review provides a...The synthesis of superheavy nuclei remains a critical area of research in nuclear physics,with the aim of extending the periodic table and deepening our understanding of the properties of nuclei.This review provides a comprehensive overview of the latest advancements in superheavy nuclei synthesis,focusing on both the experimental and theoretical developments.We discuss the primary synthesis methods,including early fusion reactions with light nuclei,cold fusion reactions using lead and bismuth targets,and hot fusion reactions involving48Ca projectiles and actinide targets.In addition,we introduce the major experimental facilities and theoretical models currently employed worldwide.This review also summarizes the experimental plans and theoretical predictions for the synthesis of new superheavy elements.Furthermore,we discuss future directions,including the potential of employing heavier projectiles,radioactive beam-induced reactions,and multi-nucleon transfer reactions,which may offer new pathways for discovering unknown superheavy nuclei.展开更多
Nuclearβ-decay,a typical decay process for unstable nuclei,is a key mechanism for producing heavy elements in the Universe.In this study,neural networks were employed to predictβ-decay half-lives and,for the first t...Nuclearβ-decay,a typical decay process for unstable nuclei,is a key mechanism for producing heavy elements in the Universe.In this study,neural networks were employed to predictβ-decay half-lives and,for the first time,to identify abnormal trends in nuclearβ-decay half-lives based on deviations between experimental values and the predictions of neural networks.Nuclei exhibiting anomalous increases,abrupt peaks,sharp decreases,abnormal odd-even oscillations,and excessively large experimental errors in theirβ-decay half-lives,which deviate from systematic patterns,were identified through deviations.These anomalous phenomena may be associated with shell effects,shape coexistence,or discrepancies in the experimental data.The discovery and analysis of these abnormal nuclei provide a valuable reference for further investigations using sophisticated microscopic theories,potentially offering insights into new physics through studies of nuclearβ-decay half-lives.展开更多
This paper provides a comprehensive analysis of all stages of the heavy-ion fusion evaporation reaction,aiming to enhance the understanding of the entire process and identify the influencing factors in calculating the...This paper provides a comprehensive analysis of all stages of the heavy-ion fusion evaporation reaction,aiming to enhance the understanding of the entire process and identify the influencing factors in calculating the evaporation residue cross-section.By focusing on the synthesis of superheavy nuclei with Z=114,we discuss the capture cross-section,fusion probability,and survival probability of the ^(48)Ca+^(244)Pu reaction and compare them with those of the 40Ar+248Cm reaction.Moreover,a systematic study examined the evaporation residue cross-sections for the synthesis of superheavy nuclei with Z=112-116 using ^(40)Ar as the projectile nucleus.The results indicate that utilizing ^(40)Ar as the projectile nucleus for synthesizing isotopes with Z=114 offers advantages such as lower incident energy and reduced experimental costs.Furthermore,using ^(40)Ar as the projectile nucleus enables the synthesis of a new key isotope,285115,thereby facilitating its identification.展开更多
基金supported by the Health&Medical Research Fund(18190481)the General Research Fund(14120520).
文摘The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair.Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated,the intimate relationship between the central nervous system and bone remains less understood,yet it has emerged as a hot topic in the bone field.In this review,we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism,either intact or after injury.First,we explored mechanistic studies linking specific brain nuclei with bone homeostasis,including the ventromedial hypothalamus,arcuate nucleus,paraventricular hypothalamic nucleus,amygdala,and locus coeruleus.We then focused on the characteristics of bone innervation and nerve subtypes,such as sensory,sympathetic,and parasympathetic nerves.Moreover,we summarized the molecular features and regulatory functions of these nerves.Finally,we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration.Therefore,considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process,ultimately benefiting future clinical translation.
文摘近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线发表在国际权威期刊《IEEE Transactions on Image Processing》(中科院一区TOP,CCF-A类期刊,IF=10.8)和以题为“SimCMC:A Simple Compact Multiview Contrastive Framework for Self-supervised Early Alzheimer’s Disease Diagnosis”的论文在线发表在国际权威期刊《IEEE Transactions on Instrumentation and Measurement》(中科院二区TOP,IF=5.6)。
基金supported by the National Natural Science Foundation of China(Nos.12375244 and 12135009)the Hunan Provincial Innovation Foundation for Postgraduate(Nos.CX20210007 and CX20230008)。
文摘In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a laser field modulates theαdecay half-life by altering theαdecay penetration probability within a limited range.Moreover,the variance in the penetration probability rate of change between even–odd and odd–even nuclei is investigated.Furthermore,we investigate the rate of change of the penetration probability for the same parent nucleus with different neutron numbers,based on the characteristics of the odd-A nucleus.We found that the influence of the laser field on the penetration probability is determined by both the shell effect and odd–even staggering.This research contributes to the understanding of nuanced interactions between laser fields and nuclear decay processes.Therefore,valuable insights for future experiments in laser–nuclear physics are attainable using this study.
文摘Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting play an important role in cancer identification and its grading.In this study,WaveSeg-UNet,a lightweight model,is introduced to segment cancerous nuclei having touching boundaries.Residual blocks are used for feature extraction.Only one feature extractor block is used in each level of the encoder and decoder.Normally,images degrade quality and lose important information during down-sampling.To overcome this loss,discrete wavelet transform(DWT)alongside maxpooling is used in the down-sampling process.Inverse DWT is used to regenerate original images during up-sampling.In the bottleneck of the proposed model,atrous spatial channel pyramid pooling(ASCPP)is used to extract effective high-level features.The ASCPP is the modified pyramid pooling having atrous layers to increase the area of the receptive field.Spatial and channel-based attention are used to focus on the location and class of the identified objects.Finally,watershed transform is used as a post processing technique to identify and refine touching boundaries of nuclei.Nuclei are identified and counted to facilitate pathologists.The same domain of transfer learning is used to retrain the model for domain adaptability.Results of the proposed model are compared with state-of-the-art models,and it outperformed the existing studies.
基金supported by the National Key R&D Program of China(Nos.2023YFA1606701 and 2022YFA1602402)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)the 111 Project。
文摘To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of the RWA formalism.The total wave functions were obtained using the generator coordinate method with microscopic cluster wave functions.Based on these wave functions,we calculated the overlap amplitudes to extract the relative motion and spatial correlations between clusters.The computed energy spectra showed reasonable agreement with the experimental data,emphasizing the effectiveness of the present framework for investigating dinucleon correlations in light nuclei.Our results revealed the presence of both dinucleon-like and cigar-like configurations in the ground states of^(6)He and^(6)Be,indicating a coexistence of compact and extended cluster structures.Furthermore,the 2_(1)^(+)state of^(6)He revealed a pronounced dineutron structure,with strong spatial correlations between the two valence neutrons.We also performed calculations for the higher-lying 2_(1)^(+)state,which showed a more spatially extended structure and provided potential references for future experimental investigations.These findings demonstrated that the TCOA method served as a powerful tool to explore cluster dynamics and dinucleon features in light,weakly bound nuclear systems.
基金supported by the Ministry of Science and Technology of China(No.2022YFE0103400)Natural Science Foundation of Guangxi Province(No.2021GXNSFAA196052)National Natural Science Foundation of China(No.11965004).
文摘The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb energy heightened by an aug-mented charge could not be mitigated completely by symmetry energy because of isospin asymmetry saturation but is resisted complementally by strong nuclear deformation.The positions of saltation for the difference in proton numbers between two neighboring nuclei at the neutron drip line,and the isospin asymmetry of the neutron drip-line nucleus as a function of the neutron number distinctly correspond to the known magic numbers,which can serve as a reference to verify the undeter-mined neutron magic number.Through fitting of the binding energy difference between mirror nuclei(BEDbMN),a set of Coulomb energy coefficients with greater accuracy is obtained.A high-precision description of the BEDbMN is useful for accurately determining the experimentally unknown mass of the nucleus close to the proton drip line if the mass of its mirror nucleus is measured experimentally.
基金supported by the Joint Funds for the Innovation of Science and Technology,Fujian province(Nos.2021Y9190 and 2021Y9210)National Natural Science Foundation of China(No.12475121)National Key R&D Program of China(Nos.2023YFA1606503 and 2024YFE0109804).
文摘An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 and FRDM models in the improved formula,the root mean square deviation(RMSD)between the calculated results and experimental data decreased from 0.456 to 0.413 and 0.415,respectively.Although the improved formula did not significantly reduce the overall RMSD,it produced results that better matched the experimental values for nuclei with larger deformations.Additionally,eXtreme Gradient Boosting(XGBoost)models were employed to further reduce the deviations between the calculated α-decay half-lives and experimental data,with the corresponding RMSDs decreasing from 0.413 to 0.295 and from 0.415 to 0.302,respectively.Furthermore,the improved empirical formula and XGBoost models were used to predict the α-decay half-lives of nuclei with Z=117,118,119,and 120.The results suggest that N=184 is the magic number.
基金supported by the National Key R&D Program of China(Nos.2022YFA1602302 and 2023YFA1606402)the National Natural Science Foundation of China(Nos.U2167204,12175314,12235020 and 12275360)+2 种基金the Continuous-Support Basic Scientific Research Projectthe"111 Center"the China Scholarship Council(CSC)。
文摘A new detector array with a large solid angle coverage for the coincidence measurement of charged fragments was developed to study the breakup reaction mechanisms of weakly bound nuclear systems at energies around the Coulomb barrier.The array has been used to explore the breakup reaction mechanisms of^(6,7)Li+^(209)Bi systems at E_(beam)=30,40,47 MeV,showing good performance in particle identification and complete kinematic measurements.Based on this,different breakup modes and breakup components were clearly distinguished,and some new breakup modes were discovered,such as^(7)Li→α+t breakup mode in6Li+209Bi system and^(7)Li→^(6)He+p breakup mode in^(7)Li+^(209)Bi system.This array can also be used to explore other breakup reaction mechanisms induced by weakly bound nuclei.
基金supported by the National Natural Science Foundation of China(Nos.12265006,12375129,U1867212)the Innovation Project of Guangxi Graduate Education(No.YCSWYCSW2022176)the Guangxi Natural Science Foundation(2017GXNSFGA198001).
文摘Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported in part by the National Natural Science Foundation of China(Nos.12175100 and 11975132)Construct Program of the Key Discipline in Hunan Province,Research Foundation of Education Bureau of Hunan Province,China(Nos.21B0402,18A237 and 22A0305)+3 种基金Natural Science Foundation of Hunan Province,China(No.2018JJ2321)Innovation Group of Nuclear and Particle Physics in USC,Shandong Province Natural Science Foundation,China(No.ZR2022JQ04)Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230962).
文摘By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.
基金supported by National Natural Science Foundation of China(Nos.12105080 and 12375123)China Postdoctoral Science Foundation(No.2023M731015)Natural Science Foundation of Henan Province(No.242300422048).
文摘A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.
基金supported in part by the U.S.Department of Energy(No.DE-SC0012910)National Nature Science Foundation of China(Nos.12035006 and 12075085)the Ministry of Science and Technology of China(No.2020YFE020200)。
文摘A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.
基金supported by the National Natural Science Foundation of China under Grant Nos.U2167204,11975040,111 Center(B20065)Brazilian authors were supported in part by local funding agencies CNPq+10 种基金FAPERJCAPESand INCT-FNA(Instituto Nacional de Ciência e Tecnologia,Física Nuclear e Aplicacoes)Research Project No.464898/2014-5Marco Siciliano's work was partially supported by the US Department of EnergyOffice of Scienceand Office of Nuclear Physics(DE-AC02-06CH11357)supported by Nuclear Energy Development and Research Project No.HNKF202224(28)Ling Chuang Research Project of the China National Nuclear Corporation No.CNNCLCKY-2023 and No.20221024000072F6-0002-7Guangdong Key Research and Development Program No.2020B040420005Guangdong Basic and Applied Basic Research Foundation No.2021B1515120027。
文摘The^(6)Li+^(89)Y experiment was performed to explore the reaction mechanism induced by a weakly bound nucleus^(6)Li and its cluster configuration.The particle-γcoincidence method was used to identify the different reaction channels.Theγ-rays coincident with^(3)He/^(3)H indicate that the^(3)H/^(3)He stripping reaction plays a significant role in the formation of Zr/Nb isotopes.The obtained results support the existence of a^(3)He-^(3)H cluster in^(6)Li.Direct and sequential transfer reactions are adequately discussed,and the FRESCO code is used to perform precise finite-range cyclic redundancy check calculations.In the microscopic calculation,direct cluster transfer is more predominant than sequential transfer in^(3)H transfer.However,the direct cluster transfer is of comparable magnitude to the sequential transfer in the^(3)He transfer.
基金the support of the staff at the Xinglong Observatorysupported by the National Key R&D Program of China(grant No.2023YFA1609700)+10 种基金supported by the National Natural Science Foundation of China(NSFCgrant Nos.12090040,12090041,12403022 and 12273057)supported by the Strategic Priority Research Program of Chinese Academy of Sciences(grant Nos.XDB0550000,XDB0550100and XDB0550102)supported by the National Key R&D Program of China(grant No.2023YFA1608304)the supports from NSFC(grant Nos.12422303,12261141690)the National Key Basic R&D Program of China via2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports of the NSFC(grant No.12403024)the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)。
文摘We assess the detectability of tidal disruption events(TDEs)using mock observations from the Mini-SiTian Array.We select 100 host galaxy samples from a simulated galaxy catalog based on specific criteria such as redshift,black hole mass,and event rate.Taking into account the site conditions and survey strategy,we simulate observations over a 440 deg^(2)field.The results indicate that 0.53±0.73 TDEs can be detected per year when observing in both g and r bands with 300 s exposures every 3 days.Applying this method to the SiTian project,we expect to discover approximately 204 TDEs annually,heralding a new era in TDE science.
基金supported by the Scientific Research Foundation of Hubei University of Education for Talent Introduction(Nos.ESRC20230002 and ESRC20230007)the Research Project of Hubei Provincial Department of Education(Nos.D20233003 and B2023191)。
文摘In this study,the chemical freeze-out of hadrons,including light-and strange-flavor particles and light nuclei,produced in Au+Au collisions at the Relativistic Heavy Ion Collider(RHIC),was investigated.Using the Thermal-FIST thermodynamic statistical model,we analyzed various particle sets:those inclusive of light nuclei,those exclusive to light nuclei,and those solely comprising light nuclei.We determined the chemical freeze-out parameters at√^(S)NN=7.7–200 Ge V and four different centralities.A significant finding was the decrease in the chemical freeze-out temperature T_(ch)with light-nuclei inclusion,with an even more pronounced reduction when considering light-nuclei yields exclusively.This suggests that light-nuclei formation occurs at a later stage in the system’s evolution at RHIC energies.We present parameterized formulas that describe the energy dependence of T_(ch)and the baryon chemical potentialμ_(B) for three distinct particle sets in central Au+Au collisions at RHIC energies.Our results reveal at least three distinct T_(ch)at RHIC energies correspond to different freeze-out hypersurfaces:a light-flavor freeze-out temperature of T_L=150.2±6 Me V,a strange-flavor freeze-out temperature T_s=165.1±2.7 Me V,and a light-nuclei freeze-out temperature T_(ln)=141.7±1.4 Me V.Notably,at the Large Hadron Collider(LHC)Pb+Pb 2.76Te V,the expected lower freeze-out temperature for light nuclei was not observed;instead,the T_(ch)for light nuclei was found to be approximately 10 Me V higher than that for light-flavor hadrons.
基金supported by the National Natural Science Foundation of China(Nos.U2267205 and 12475124)a ZSTU intramural grant(22062267-Y)Excellent Graduate Thesis Cultivation Fund(LW-YP2024011).
文摘Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Key R&D Program of China(Nos.2023YFA1606500,2023YFA1606501,2023YFA1606504)+3 种基金the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12375118,and 12435008)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34010000)the Major State Basic Research Development Program of China(2023YFA1606503)the CAS Strategic Priority Research Program(XDB34010000)。
文摘The synthesis of superheavy nuclei remains a critical area of research in nuclear physics,with the aim of extending the periodic table and deepening our understanding of the properties of nuclei.This review provides a comprehensive overview of the latest advancements in superheavy nuclei synthesis,focusing on both the experimental and theoretical developments.We discuss the primary synthesis methods,including early fusion reactions with light nuclei,cold fusion reactions using lead and bismuth targets,and hot fusion reactions involving48Ca projectiles and actinide targets.In addition,we introduce the major experimental facilities and theoretical models currently employed worldwide.This review also summarizes the experimental plans and theoretical predictions for the synthesis of new superheavy elements.Furthermore,we discuss future directions,including the potential of employing heavier projectiles,radioactive beam-induced reactions,and multi-nucleon transfer reactions,which may offer new pathways for discovering unknown superheavy nuclei.
基金supported by the‘Young Scientist Scheme’of the National Key R&D Program of China(No.2021YFA1601500)National Natural Science Foundation of China(Nos.12075104,12375109,11875070,and 11935001)+1 种基金Anhui Project(Z010118169)Key Research Foundation of the Education Ministry of Anhui Province(No.2023AH050095)。
文摘Nuclearβ-decay,a typical decay process for unstable nuclei,is a key mechanism for producing heavy elements in the Universe.In this study,neural networks were employed to predictβ-decay half-lives and,for the first time,to identify abnormal trends in nuclearβ-decay half-lives based on deviations between experimental values and the predictions of neural networks.Nuclei exhibiting anomalous increases,abrupt peaks,sharp decreases,abnormal odd-even oscillations,and excessively large experimental errors in theirβ-decay half-lives,which deviate from systematic patterns,were identified through deviations.These anomalous phenomena may be associated with shell effects,shape coexistence,or discrepancies in the experimental data.The discovery and analysis of these abnormal nuclei provide a valuable reference for further investigations using sophisticated microscopic theories,potentially offering insights into new physics through studies of nuclearβ-decay half-lives.
基金supported by the National Natural Science Foundation of China(Nos.12175170 and 11675066).
文摘This paper provides a comprehensive analysis of all stages of the heavy-ion fusion evaporation reaction,aiming to enhance the understanding of the entire process and identify the influencing factors in calculating the evaporation residue cross-section.By focusing on the synthesis of superheavy nuclei with Z=114,we discuss the capture cross-section,fusion probability,and survival probability of the ^(48)Ca+^(244)Pu reaction and compare them with those of the 40Ar+248Cm reaction.Moreover,a systematic study examined the evaporation residue cross-sections for the synthesis of superheavy nuclei with Z=112-116 using ^(40)Ar as the projectile nucleus.The results indicate that utilizing ^(40)Ar as the projectile nucleus for synthesizing isotopes with Z=114 offers advantages such as lower incident energy and reduced experimental costs.Furthermore,using ^(40)Ar as the projectile nucleus enables the synthesis of a new key isotope,285115,thereby facilitating its identification.