Owing to the significant potential of alkalin seawater electrolysis for converting surplus power into eco friendly hydrogen fuel,we developed bifunctional elec trodes that integrate low-crystalline NiFe LDHs and amorp...Owing to the significant potential of alkalin seawater electrolysis for converting surplus power into eco friendly hydrogen fuel,we developed bifunctional elec trodes that integrate low-crystalline NiFe LDHs and amorphous NiFe alloy on a Ni foam(NF)substrate to enhance this process.Driven by the battery-like charac teristics of NiFe LDHs,an anti-corrosive and active oute layer of NiFe^(vac)OOH continuously forms over time in th hybrid on the anode for the oxygen evolution reaction(OER),effectively mitigating powder shedding caused by corrosion induced by multiple anions in seawater.Mean while,the strong bond between the hybrid and the NF substrate maintains intact hybrid coatings to ensure a rel atively high overall conductivity of the electrodes,signif icantly reducing the negative effects of structura degradation during the OER and hydrogen evolution reaction(HER),as well as the accumulation of contami nants on the electrode surfaces.In long-term tests,thes bifunctionalhybridelectrodesmaintained stable performance,even at a high current density o500 mA·cm^(-2).The cell voltage increased by only 88 m V over 1000 h to 1.970 V during saline electrolysis and by103 mV over 500 h to 2.062 V during seawater electroly sis.Hence,this study provides valuable insights into efficient and stable seawater electrolysis using NiFe LDHs–NiFe alloy hybrids.展开更多
Searching for efficient nonprecious metal-based catalysts toward oxygen evolution reaction(OER)are of significance for seawater electrolysis.Herein,a core-shell-structured hybrid of cobalt phosphide nanowires@NiFe lay...Searching for efficient nonprecious metal-based catalysts toward oxygen evolution reaction(OER)are of significance for seawater electrolysis.Herein,a core-shell-structured hybrid of cobalt phosphide nanowires@NiFe layered double hydroxide nanosheets grown on conductive nickel foam(CoP@NiFe LDH/NF)is prepared by a feasible approach at low temperature.The charming structure can provide numerous phosphide/hydroxide heterogenous interfaces,expose abundant active sites,and boost elec-tron/mass transfer,synergistically enhancing catalytic OER activity.When employed as an electrocatalyst toward the OER,the resultant CoP@NiFe LDH/NF only requires a small overpotential of 287 mV to pro-vide 300 mA/cm^(2)current density as well as long-time durability in 1.0 mol/L KOH seawater.The regula-tion of electronic states and surface reconstruction synergistically contribute to highly efficient seawater oxidation.This work provides an opportunity to construct efficient and inexpensive electrocatalysts for hydrogen production.展开更多
In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ...In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.展开更多
基金supported by the National Natural Science Foundation of China(No.22209054)the Natural Science Foundation of Hunan Province(Nos.2023JJ30017 and 2023JJ30030)the Natural Science Foundation of Changsha(No.kq2208223)。
文摘Owing to the significant potential of alkalin seawater electrolysis for converting surplus power into eco friendly hydrogen fuel,we developed bifunctional elec trodes that integrate low-crystalline NiFe LDHs and amorphous NiFe alloy on a Ni foam(NF)substrate to enhance this process.Driven by the battery-like charac teristics of NiFe LDHs,an anti-corrosive and active oute layer of NiFe^(vac)OOH continuously forms over time in th hybrid on the anode for the oxygen evolution reaction(OER),effectively mitigating powder shedding caused by corrosion induced by multiple anions in seawater.Mean while,the strong bond between the hybrid and the NF substrate maintains intact hybrid coatings to ensure a rel atively high overall conductivity of the electrodes,signif icantly reducing the negative effects of structura degradation during the OER and hydrogen evolution reaction(HER),as well as the accumulation of contami nants on the electrode surfaces.In long-term tests,thes bifunctionalhybridelectrodesmaintained stable performance,even at a high current density o500 mA·cm^(-2).The cell voltage increased by only 88 m V over 1000 h to 1.970 V during saline electrolysis and by103 mV over 500 h to 2.062 V during seawater electroly sis.Hence,this study provides valuable insights into efficient and stable seawater electrolysis using NiFe LDHs–NiFe alloy hybrids.
基金Financial support from the National Natural Science Foundation of China (No.21971086)University Feature Laboratory for Energy Conversion and Nanocatalysis of Shandong Province
文摘Searching for efficient nonprecious metal-based catalysts toward oxygen evolution reaction(OER)are of significance for seawater electrolysis.Herein,a core-shell-structured hybrid of cobalt phosphide nanowires@NiFe layered double hydroxide nanosheets grown on conductive nickel foam(CoP@NiFe LDH/NF)is prepared by a feasible approach at low temperature.The charming structure can provide numerous phosphide/hydroxide heterogenous interfaces,expose abundant active sites,and boost elec-tron/mass transfer,synergistically enhancing catalytic OER activity.When employed as an electrocatalyst toward the OER,the resultant CoP@NiFe LDH/NF only requires a small overpotential of 287 mV to pro-vide 300 mA/cm^(2)current density as well as long-time durability in 1.0 mol/L KOH seawater.The regula-tion of electronic states and surface reconstruction synergistically contribute to highly efficient seawater oxidation.This work provides an opportunity to construct efficient and inexpensive electrocatalysts for hydrogen production.
基金the National Natural Science Foundation of China(52001173&52100190)the Jiangsu Specially-Appointed Professor Program,Natural Science Foundation of Jiangsu Province(BK20200970&BK20210834)+2 种基金General Project of Natural Science Research in Jiangsu Colleges and Universities(20KJB530011&20KJB430046)Research Fund of Nantong University(03083054)National College Students'innovation and entrepreneurship training program(202110304019Z)for financial support.
文摘In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.
文摘制备了添加不同含量的Cu和Ni金属粉末作为导电组元的NiFe2O4基金属陶瓷材料,研究了材料的物相组成、显微组织以及金属相含量对材料致密度和电导率的影响。研究结果表明,所制备的金属陶瓷材料由NiFe2O4和Cu Ni合金相组成,其中细小且形状不规则的(Cu Ni)相均匀地镶嵌在NiFe2O4陶瓷基体上;试样的致密度在金属含量为0~20%范围内存在极大值;Cu Ni NiFe2O4金属陶瓷遵循半导体导电机理,其电导率随着温度的升高和金属含量的增大而增大。