Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one ...Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)展开更多
Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one...Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one could establish the exact order of approximation for some special nodes.In the present note we consider the sets of interpolation nodes obtained by adjusting the Chebyshev roots of the second kind on the interval [0,1] and then extending this set to [-1,1] in a symmetric way.We show that in this case the exact order of approximation is O( 1 n 2 ).展开更多
基金Supported by the National Nature Science Foundation.
文摘Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)
基金Supported by the National Natural Science Foundation of China (Grant No. 10601065)
文摘Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one could establish the exact order of approximation for some special nodes.In the present note we consider the sets of interpolation nodes obtained by adjusting the Chebyshev roots of the second kind on the interval [0,1] and then extending this set to [-1,1] in a symmetric way.We show that in this case the exact order of approximation is O( 1 n 2 ).