期刊文献+
共找到37,295篇文章
< 1 2 250 >
每页显示 20 50 100
A Quantitative Seismic Topographic Effect Prediction Method Based upon BP Neural Network Algorithm and FEM Simulation 被引量:1
1
作者 Qifeng Jiang Mianshui Rong +1 位作者 Wei Wei Tingting Chen 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1355-1366,共12页
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas... Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training. 展开更多
关键词 seismic topographic effect finite element method bp neural network algorithm earthquake disaster prevention
原文传递
Application of Adaptive Whale Optimization Algorithm Based BP Neural Network in RSSI Positioning
2
作者 Duo Peng Mingshuo Liu Kun Xie 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期516-529,共14页
The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A a... The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm. 展开更多
关键词 wireless sensor network received signal strength neural network whale optimization algorithm adaptive weight factor extended Kalman filter
在线阅读 下载PDF
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
3
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
4
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation bp neural network chaos algorithm genetic algorithm data glove.
原文传递
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
5
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind Evolutionary algorithm bp neural network
在线阅读 下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
6
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
7
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent neural network(RNN) Whale Optimization algorithm(WOA) CYBERSECURITY machine learning optimization
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
8
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
9
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
在线阅读 下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
10
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
11
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm 被引量:10
12
作者 Maohua Xiao Wei Zhang +2 位作者 Kai Wen Yue Zhu Yilidaer Yiliyasi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期252-261,共10页
In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.The... In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.Therefore,in this paper,firstly,Wavelet Packet Decomposition is used for feature extraction of vibration signals,which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals,and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition.The features are visualized by the K-Means clustering method,and the results show that the extracted energy features can accurately distinguish the different states of the bearing.Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-rithm is proposed to identify the bearing faults.Compared with the Particle Swarm Algorithm,Beetle Algorithm can quickly find the error extreme value,which greatly reduces the training time of the model.At last,two experiments are conducted,which show that the accuracy of the model can reach more than 95%,and the model has a certain anti-interference ability. 展开更多
关键词 Rolling bearing bp neural network Beetle algorithm Wavelet packet transform
在线阅读 下载PDF
An Image Encryption Algorithm Based on BP Neural Network and Hyperchaotic System 被引量:9
13
作者 Feifei Yang Jun Mou +1 位作者 Yinghong Cao Ran Chu 《China Communications》 SCIE CSCD 2020年第5期21-28,共8页
To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based... To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication. 展开更多
关键词 bp neural network fractional-order hyperchaotic system image encryption algorithm secure communication
在线阅读 下载PDF
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
14
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm bp neural network physical and mechanical parameters surrounding rock direct-back analysis
在线阅读 下载PDF
An Efficient Hybrid Model Based on Modified Whale Optimization Algorithm and Multilayer Perceptron Neural Network for Medical Classification Problems 被引量:1
15
作者 Saeid Raziani Sajad Ahmadian +1 位作者 Seyed Mohammad Jafar Jalali Abdolah Chalechale 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1504-1521,共18页
Feedforward Neural Network(FNN)is one of the most popular neural network models that is utilized to solve a wide range of nonlinear and complex problems.Several models such as stochastic gradient descent have been dev... Feedforward Neural Network(FNN)is one of the most popular neural network models that is utilized to solve a wide range of nonlinear and complex problems.Several models such as stochastic gradient descent have been developed to train FNNs.However,they mainly suffer from falling into local optima leading to reduce the accuracy of FNNs.Moreover,the convergence speed of training process depends on the initial values of weights and biases in FNNs.Generally,these values are randomly determined by most of the training models.To deal with these issues,in this paper,we develop a novel evolutionary algorithm by modifying the original version of Whale Optimization Algorithm(WOA).To this end,a nonlinear function is introduced to improve the exploration and exploitation phases in the search process of WOA.Then,the modified WOA is applied to automatically obtain the initial values of weights and biases in FNN leading to reduce the probability of falling into local optima.In addition,the FNN model trained by the modified WOA is used to develop a classification approach for medical diagnosis problems.Ten medical diagnosis datasets are utilized to evaluate the efficiency of the proposed method.Also,four evaluation metrics including accuracy,AUC,specificity,and sensitivity are used in the experiments to compare the performance of classification models.The experimental results demonstrate that the proposed method is better than other competing classification models due to achieving higher values of accuracy,AUC,specificity,and sensitivity metrics for the used datasets. 展开更多
关键词 Feed forward neural network Meta-heuristic algorithm Whale optimization algorithm Optimization CLASSIFICATION Bionic algorithm
在线阅读 下载PDF
Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data 被引量:1
16
作者 Leyang Wang Ranran Xu Fengbin Yu 《Geodesy and Geodynamics》 CSCD 2022年第4期386-398,共13页
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line... The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment. 展开更多
关键词 Fault parameter inversion Genetic algorithm Nelder-Mead simplex algorithm neural network algorithm
原文传递
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
17
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control bp neural network heating furnace
在线阅读 下载PDF
Research on BP Neural Network Algorithm Based on Quasi- Newton Method 被引量:3
18
作者 Lu Peixin 《International Journal of Technology Management》 2014年第7期71-74,共4页
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f... With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better. 展开更多
关键词 Newton method bp neural network improved algorithm
在线阅读 下载PDF
A low-complexity AMP detection algorithm with deep neural network for massive mimo systems
19
作者 Zufan Zhang Yang Li +1 位作者 Xiaoqin Yan Zonghua Ouyang 《Digital Communications and Networks》 CSCD 2024年第5期1375-1386,共12页
Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complex... Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods. 展开更多
关键词 Massive MIMO system Approximate message passing(AMP)detection algorithm Deep neural network(DNN) Bit error rate(BER) LOW-COMPLEXITY
在线阅读 下载PDF
A Self-organization Mapping Neural Network Algorithm and Its Application to Identify Ecosystem Service Zones 被引量:16
20
作者 战金艳 史娜娜 +1 位作者 吴红 邓祥征 《Agricultural Science & Technology》 CAS 2009年第5期162-165,共4页
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A... The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers. 展开更多
关键词 neural network algorithm Ecosystem services Ecosystem service zones Sustainable ecosystem management
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部