To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these c...To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these catalysts was confirmed by XRD and SEM analyses,and Ni and Fe species existed primarily in the forms of Ni^(2+)and Fe^(3+),respectively.It was found that Ni/Fe molar ratio influenced the H_(2)reducibility and surface properties of NiFe catalysts.Specifically,Ni_(2)Fe‐LDO and Ni_(3)Fe‐LDO exhibited higher reducibility under H_(2)atmosphere.Moreover,the Ni_(2)Fe‐LDO catalyst contained a higher concentration of surface oxygen species(Osurf).Deoxygenation results demonstrated that the Ni_(2)Fe‐LDO catalyst achieved superior palm oil conversion,higher liquid product yield and enhanced selectivity toward C_(15)–C_(18)hydrocarbons compared to other catalysts.This improved performance was attributed to its higher hydrogen dissociation activity and enhanced adsorption capacity for palm oil molecules.Furthermore,reaction condition studies revealed that palm oil was completely converted,yielding 86.8%liquid product with 81.8%selectivity of C_(15)–C_(18)hydrocarbons at 350℃under 7 MPa H_(2)pressure.This finding provides an insight into the development of efficient catalysts for the deoxygenation of fatty compounds to biofuels.展开更多
A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rate...A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.展开更多
基金National Natural Science Foundation of China(22278084)State Key Laboratory of Heavy Oil Processing(SKLHOP202402003)for financing this research.
文摘To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these catalysts was confirmed by XRD and SEM analyses,and Ni and Fe species existed primarily in the forms of Ni^(2+)and Fe^(3+),respectively.It was found that Ni/Fe molar ratio influenced the H_(2)reducibility and surface properties of NiFe catalysts.Specifically,Ni_(2)Fe‐LDO and Ni_(3)Fe‐LDO exhibited higher reducibility under H_(2)atmosphere.Moreover,the Ni_(2)Fe‐LDO catalyst contained a higher concentration of surface oxygen species(Osurf).Deoxygenation results demonstrated that the Ni_(2)Fe‐LDO catalyst achieved superior palm oil conversion,higher liquid product yield and enhanced selectivity toward C_(15)–C_(18)hydrocarbons compared to other catalysts.This improved performance was attributed to its higher hydrogen dissociation activity and enhanced adsorption capacity for palm oil molecules.Furthermore,reaction condition studies revealed that palm oil was completely converted,yielding 86.8%liquid product with 81.8%selectivity of C_(15)–C_(18)hydrocarbons at 350℃under 7 MPa H_(2)pressure.This finding provides an insight into the development of efficient catalysts for the deoxygenation of fatty compounds to biofuels.
文摘制备了添加不同含量的Cu和Ni金属粉末作为导电组元的NiFe2O4基金属陶瓷材料,研究了材料的物相组成、显微组织以及金属相含量对材料致密度和电导率的影响。研究结果表明,所制备的金属陶瓷材料由NiFe2O4和Cu Ni合金相组成,其中细小且形状不规则的(Cu Ni)相均匀地镶嵌在NiFe2O4陶瓷基体上;试样的致密度在金属含量为0~20%范围内存在极大值;Cu Ni NiFe2O4金属陶瓷遵循半导体导电机理,其电导率随着温度的升高和金属含量的增大而增大。
基金Project(51474238)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.