期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Advancing Manufacturing Limits:Ultrafast Laser Nanofabrication Techniques
1
作者 Zhenyuan Lin Lingfei Ji Minghui Hong 《Engineering》 2025年第6期9-12,共4页
1.Introduction.In recent decades,the pursuit of miniaturization has been crucial in nanofabrication,fostering innovation,and enabling novel applications in chip manufacturing,nanophotonics,and quantum devices[1,2].Adv... 1.Introduction.In recent decades,the pursuit of miniaturization has been crucial in nanofabrication,fostering innovation,and enabling novel applications in chip manufacturing,nanophotonics,and quantum devices[1,2].Advancements in nanofabrication technology are driven by the demand for higher component density and performance,necessitating precise material processing in atmospheric environments. 展开更多
关键词 quantum devices advancements component density ultrafast laser performance precise material processing nanofabrication MINIATURIZATION chip manufacturingnanophotonicsand
在线阅读 下载PDF
Sub-Diffraction Limit Quantum Metrology for Nanofabrication
2
作者 Wenyi Ye Yang Li +10 位作者 Lianwei Chen Mingbo Pu Zheting Meng Yuanjian Huang Hengshuo Guo Xiaoyin Li Yinghui Guo Xiong Li Yun Long Emmanuel Stratakis Xiangang Luo 《Engineering》 2025年第6期96-103,共8页
Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditio... Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications. 展开更多
关键词 nanofabrication Precision measurement Diffraction limit Quantum metrology
在线阅读 下载PDF
Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates
3
作者 Zhiwen Shu Bo Feng +5 位作者 Peng Liu Lei Chen Huikang Liang Yiqin Chen Jianwu Yu Huigao Duan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期313-326,共14页
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a... There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications. 展开更多
关键词 resist-based transfer printing near-zero adhesion critical surface energy wafer-scale nanofabrication in situ fabrication optoelectronic devices
在线阅读 下载PDF
Nanofabrication of nanostructure lattices:from high-quality large patterns to precise hybrid units
4
作者 Rui Ma Xiaodan Zhang +2 位作者 Duncan Sutherland Vladimir Bochenkov Shikai Deng 《International Journal of Extreme Manufacturing》 CSCD 2024年第6期107-135,共29页
Sub-wavelength nanostructure lattices provide versatile platforms for light control and the basis for various novel phenomena and applications in physics, material science, chemistry, biology,and energy. The thriving ... Sub-wavelength nanostructure lattices provide versatile platforms for light control and the basis for various novel phenomena and applications in physics, material science, chemistry, biology,and energy. The thriving study of nanostructure lattices is building on the remarkable progress of nanofabrication techniques, especially for the possibility of fabricating larger-area patterns while achieving higher-quality lattices, complex shapes, and hybrid materials units. In this review, we present a comprehensive review of techniques for large-area fabrication of optical nanostructure arrays, encompassing direct writing, self-assembly, controllable deposition, and nanoimprint/print methods. Furthermore, a particular focus is made on the recent improvement of unit accuracy and diversity, leading to integrated and multifunctional structures for devices and applications. 展开更多
关键词 nanofabrication nanostructure lattices hybrid material structures metasurfaces large-area fabrication
在线阅读 下载PDF
Friction-Induced Nanofabrication: A Review 被引量:4
5
作者 Bingjun Yu Linmao Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期26-51,共26页
As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improvin... As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication. 展开更多
关键词 Scanning probe microscope Tip-based lithography Friction-induced nanofabrication Friction-induced selective etching
在线阅读 下载PDF
Nanoimprint Lithography:A Processing Technique for Nanofabrication Advancement 被引量:5
6
作者 Weimin Zhou Guoquan Min +4 位作者 Jing Zhang Yanbo Liu Jinhe Wang Yanping Zhang Feng Sun 《Nano-Micro Letters》 SCIE EI CAS 2011年第2期135-140,共6页
Nanoimprint lithography(NIL) is an emerging micro/nano-patterning technique,which is a high-resolution,high-throughput and yet simple fabrication process.According to International Technology Roadmap for Semiconductor... Nanoimprint lithography(NIL) is an emerging micro/nano-patterning technique,which is a high-resolution,high-throughput and yet simple fabrication process.According to International Technology Roadmap for Semiconductor(ITRS),NIL has emerged as the next generation lithography candidate for the22 nm and 16 nm technological nodes.In this paper,we present an overview of nanoimprint lithography.The classfication,research focus,critical issues,and the future of nanoimprint lithography are intensively elaborated.A pattern as small as 2.4 nm has been demonstrated.Full-wafer nanoimprint lithography has been completed on a 12-inch wafer.Recently,12.5 nm pattern resolution through soft molecular scale nanoimprint lithography has been achieved by EV Group,a leading nanoimprint lithography technology supplier. 展开更多
关键词 Nanoimprint lithography Soft molecular scale nanofabrication
在线阅读 下载PDF
Helium-ion-beam nanofabrication: extreme processes and applications 被引量:2
7
作者 Shixuan He Rong Tian +2 位作者 Wei Wu Wen-Di Li Deqiang Wang 《International Journal of Extreme Manufacturing》 EI 2021年第1期1-23,共23页
Helium ion beam(HIB)technology plays an important role in the extreme fields of nanofabrication.This paper reviews the latest developments in HIB technology as well as its extreme processing capabilities and widesprea... Helium ion beam(HIB)technology plays an important role in the extreme fields of nanofabrication.This paper reviews the latest developments in HIB technology as well as its extreme processing capabilities and widespread applications in nanofabrication.HIB-based nanofabrication includes direct-write milling,ion beam-induced deposition,and direct-write lithography without resist assistance.HIB nanoscale applications have also been evaluated in the areas of integrated circuits,materials sciences,nano-optics,and biological sciences.This review covers four thematic applications of HIB:(1)helium ion microscopy imaging for biological samples and semiconductors;(2)HIB milling and swelling for 2D/3D nanopore fabrication;(3)HIB-induced deposition for nanopillars,nanowires,and 3D nanostructures;(4)additional HIB direct writing for resist,graphene,and plasmonic nanostructures.This paper concludes with a summary of potential future applications and areas of improvement for HIB extreme nanofabrication technology. 展开更多
关键词 helium ion beam extreme nanofabrication direct writing NANOSTRUCTURES
在线阅读 下载PDF
Research on Nanofabrication Technology of Micro-/Nano-Stereo Rapid Prototyping of PCVD
8
作者 Sandy TO 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期280-,共1页
At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS... At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc. 展开更多
关键词 PLASMA nanofabrication rapid prototyping advan ced manufacturing technology micro/nano-technology
在线阅读 下载PDF
Laser-nanofabrication-enabled multidimensional photonic integrated circuits
9
作者 Linnan Jia Han Lin +3 位作者 Bin Zhang Guiyuan Cao Feng Chen Baohua Jiaa 《Photonics Insights》 2025年第2期163-211,共49页
The ever-increasing demand for data capacity and information processing speed is driving the development of new techniques to break the performance limitations of current electronic-based data processing systems.Photo... The ever-increasing demand for data capacity and information processing speed is driving the development of new techniques to break the performance limitations of current electronic-based data processing systems.Photonic integrated circuits(PICs)have been promising candidates for nextgeneration chip technology,featuring broad bandwidth,low power consumption,and ultrafast data processing speed.Recent advances in three-dimensional(3D)PIC fabrication and integration of two-dimensional(2D)materials with unique structures and distinctive properties have accelerated PIC development,yielding new possibilities for device realization with outstanding performance and new features.Advanced nanofabrication techniques are fundamentally important for device realization,among which laser nanofabrication,exhibiting one-step and maskless writing capability,has been widely used to fabricate 2D/3D PICs.Although there are several reviews about the fabrication of 2D or 3D PICs,none of them touched on the potential of integrating 2D materials with 3D PICs,which opens new avenues for integration and functionalities and will be substantially important for future development.This review provides a comprehensive overview of laser nanofabrication techniques in multidimensional structure manufacturing for PIC applications.Building on the recent advancements in 3D PIC fabrication and 2D-material-based functional devices,we highlight the potential of integrating 2D materials with 3D PICs.This integration paves the way for creating multidimensional structures with unprecedented optical properties and functionalities,unlocking opportunities that have yet to be explored.By highlighting these possibilities,this review aims to foster new insights and inspire novel directions in the field of PICs. 展开更多
关键词 laser nanofabrication photonic integrated circuit 2D material
在线阅读 下载PDF
Influence of Film Thickness on Nanofabrication of Graphene Oxide
10
作者 Chuan Tang Lei Chen Linmao Qian 《Nanomanufacturing and Metrology》 EI 2024年第2期13-25,共13页
Nanofabrication of two-dimensional materials through mechanical machining is normally influenced by not only process parameters such as load and velocity but also intrinsic properties such as strength and thickness.He... Nanofabrication of two-dimensional materials through mechanical machining is normally influenced by not only process parameters such as load and velocity but also intrinsic properties such as strength and thickness.Herein,we examined the effects of graphene oxide(GO)film thickness on nanofabrication on the plane surfaces and at the step edges using scanning probe microscope lithography.The material removal of GO initiates at the load above a critical value,which strongly depends on film thickness and locations.With the increase in film thickness,the critical load decreases monotonically on the plane surfaces but increases gradually at the step edges.Further,the critical load for the GO monolayer at the step edges is at least 25 times lower than that on the plane surfaces,and the gap decreases to around 3 times when GO thickness increases to four layers.Then,mechanical nanofabrication initiating from the GO step edge allows producing various nanopatterns under extremely low loads around 1 nN.Finally,the GO nanostructures are deoxidized by annealing at 800°C in high-purity argon to restore their highly functionalized conjugated structures,which are supported by X-ray diffraction and Raman characterizations.This work provides a novel approach to fabricating graphene-like nanostructures by deoxidizing GO after nanofabrication,which holds significant potential for applications in graphene-based devices. 展开更多
关键词 Graphene oxide nanofabrication Film thickness step edge NANOPATTERN Deoxidized treatment
原文传递
Ice lithography for 3D nanofabrication 被引量:4
11
作者 Ding Zhao Anpan Han Min Qiu 《Science Bulletin》 SCIE EI CAS CSCD 2019年第12期865-871,共7页
Nanotechnology and nanoscience are enabled by nanofabrication. Electron-beam lithography, which makes 2 D patterns down to a few nanometers, is one of the fundamental pillars of nanofabrication.Recently, significant p... Nanotechnology and nanoscience are enabled by nanofabrication. Electron-beam lithography, which makes 2 D patterns down to a few nanometers, is one of the fundamental pillars of nanofabrication.Recently, significant progress in 3 D electron-beam-based nanofabrication has been made, such as the emerging ice lithography technology, in which ice thin-films are patterned by a focused electronbeam. Here, we review the history and progress of ice lithography, and focus on its applications in efficient 3 D nanofabrication and additive manufacturing or nanoscale 3 D printing. The finest linewidth made using frozen octane is below 5 nm, and nanostructures can be fabricated in selected areas on non-planar surfaces such as freely suspended nanotubes or nanowires. As developing custom instruments is required to advance this emerging technology, we discuss the evolution of ice lithography instruments and highlight major instrumentation advances. Finally, we present the perspectives of 3 D printing of functional materials using organic ices. We believe that we barely scratched the surface of this new and exciting research area, and we hope that this review will stimulate cutting-edge and interdisciplinary research that exploits the undiscovered potentials of ice lithography for 3 D photonics, electronics and 3 D nanodevices for biology and medicine. 展开更多
关键词 NANOTECHNOLOGY nanofabrication Electron-beam lithography Ice lithography 3D nanofabrication Additive manufacturing Organic ice
原文传递
Structural color from basic principles to emerging applications
12
作者 Dohyun Kang Junsuk Rho 《Opto-Electronic Advances》 2025年第4期1-3,共3页
Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for ... Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color. 展开更多
关键词 structural colors anti counterfeiting SENSORS DISPLAYS structural color nanofabrication PRINTING optical applications
在线阅读 下载PDF
Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation 被引量:12
13
作者 Wei Xiong Yun Shen Zhou +5 位作者 Xiang Nan He Yang Gao Masoud Mahjouri-Samani Lan Jiang Tommaso Baldacchini Yong Feng Lu 《Light(Science & Applications)》 SCIE EI CAS 2012年第1期123-126,共4页
Modern three-dimensional nanofabrication requires both additive and subtractive processes.However,both processes are largely isolated and generally regarded as incompatible with each other.In this study,we developed s... Modern three-dimensional nanofabrication requires both additive and subtractive processes.However,both processes are largely isolated and generally regarded as incompatible with each other.In this study,we developed simultaneous additive and subtractive fabrication processes using two-photon polymerization followed by femtosecond(fs)laser multiphoton ablation.To demonstrate the new capability,submicrometer polymer fibers containing periodic holes of 500-nm diameter and microfluidic channels of 1-mm diameter were successfully fabricated.This method combining both two-photon polymerization and fs laser ablation improves the nanofabrication efficiency and enables the fabrication of complex three-dimensional micro-/nanostructures,promising for a wide range of applications in integrated optics,microfluidics and microelectromechanical systems. 展开更多
关键词 femtosecond laser direct writing femtosecond laser multiphoton ablation micro-/nanofabrication two-photon polymerization
原文传递
Laser-based micro/nanofabrication in one, two and three dimensions 被引量:7
14
作者 Wei XIONG Yunshen ZHOU +9 位作者 Wenjia HOU Lijia JIANG Masoud MAHJOURI-SAMANI Jongbok PARK Xiangnan HE Yang GAO Lisha FAN Tommaso BALDACCHINI Jean-Francois SILVAIN Yongfeng LU 《Frontiers of Optoelectronics》 CSCD 2015年第4期351-378,共28页
Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modem nanoscience and technology and becomes critically important for numerous emerging ... Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modem nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanopho- tonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, roomtemperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrica- tion, the combination of additive two-photon polymeriza- tion (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which tional fabrication methods are challenging for conven- Considering the numerous unique advantages of laser-based techniques, the laser- based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices. 展开更多
关键词 micro/nanofabrication laser material interac-tion carbon nanotubes (CNTs) graphene two-photonpolymerization (TPP) multi-photon ablation (MPA)
原文传递
Advances in diamond nanofabrication for ultrasensitive devices 被引量:2
15
作者 Stefania Castelletto Lorenzo Rosa +2 位作者 Jonathan Blackledge Mohammed Zaher Al Abri Albert Boretti 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期80-95,共16页
This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano-and micromechanical,nanophotonics and optomechanical components.These constituents of integrated de... This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano-and micromechanical,nanophotonics and optomechanical components.These constituents of integrated devices incorporating specific dopants in the material provide the capacity to enhance the sensitivity in detecting mass and forces as well as magnetic field down to quantum mechanical limits and will lead pioneering innovations in ultrasensitive sensing and precision measurements in the realm of the medical sciences,quantum sciences and related technologies. 展开更多
关键词 nano-diamonds nanofabrication nanomechanics NANOPHOTONICS OPTOMECHANICS
原文传递
Conductive nanofabrics as multifunctional interlayer of sulfur-loading cathode towards durable lithium-sulfur batteries
16
作者 Min Chen Xinxin Li +10 位作者 Weijie Cai Xinxin Han Chuancong Zhou Ke Zheng Ruomeng Duan Yanfei Zhao Mengmeng Shao Wenlong Wang Kaihong Zheng Bo Feng Xiaodong Shi 《Chinese Chemical Letters》 2025年第9期602-607,共6页
Active sulfur dissolution and shuttle effect of lithium polysulfides(LiPSs)are the main obstacles hindering the practical application of lithium-sulfur batteries(LSBs),which is primarily induced by the direct interact... Active sulfur dissolution and shuttle effect of lithium polysulfides(LiPSs)are the main obstacles hindering the practical application of lithium-sulfur batteries(LSBs),which is primarily induced by the direct interaction between sulfur-loading cathode and liquid electrolyte.The introduction of functional interlayer within the separator and cathode is an effective strategy to stabilize the electrode/electrolyte interface reaction and improve the utilization rate of active sulfur.Herein,conductive composite nanofabrics(CCN)with multifunctional groups are employed as the interlayer of sulfur-loading cathode,in which the PMIA/PAN supporting fibers offer robust mechanical strength and high thermostable performance,and gelatin/polypyrrole functional fibers ensure high electrical conductivity and strong chemical interaction for LiPSs.As demonstrated by the experimental data and material characterizations,the presence of CCN interlayer not only blocks the shuttle behavior of LiPSs,but also strengthens the interface stability of both Li anode and sulfur-loading cathode.Interestingly,the assembled LSBs with CCN interlayer can maintain stable capacity of 686 mAh/g after 200 cycles at 0.5 A/g.This work will provide new ideas for the elaborate design of functional in terlayers/se para tors for LSBs and lithium metal batteries. 展开更多
关键词 Conductive nanofabrics interlayer Lithium polysulfides Shuttle effect Gelatin polypyrrole composite Lithium-sulfur batteries
原文传递
Tip-and Laser-based 3D Nanofabrication in Extended Macroscopic Working Areas
17
作者 Ingo Ortlepp Thomas Frohlich +26 位作者 Roland FuBl Johann Reger Christoph Schaffel Stefan Sinzinger Steffen Strehle ReneTheska Lena Zentner Jens-Peter Zollner Ivo WRangelow Carsten Reinhardt Tino Hausotte Xinrui Cao Oliver Dannberg Florian Fern David Fischer Stephan Gorges Martin Hofmann Johannes Kirchner Andreas Meister Taras Sasiuk Ralf Schienbein Shraddha Supreeti Laura Mohr-Weidenfeller Christoph Weise Christoph Reuter Jaqueline Stauffenberg Eberhard Manske 《Nanomanufacturing and Metrology》 2021年第3期132-148,共17页
The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventiona... The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies.This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable:custom design and solutions for specific applications will dominate future development(Fritze in:Panning EM,Liddle JA(eds)Novel patterning technologies.International society for optics and photonics.SPIE,Bellingham,2021.https://doi.org/10.1117/12.2593229).For this reason,new aspects arise for future lithography,which is why enormous effort has been directed to the development of alternative fabrication technologies.Yet,the technologies emerging from this process,which are promising for coping with the current resolution and accuracy challenges,are only demonstrated as a proof-of-concept on a lab scale of several square micrometers.Such scale is not adequate for the requirements of modern lithography;therefore,there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies.Similar challenges arise because of the technical progress in various other fields,realizing new and unique functionalities based on nanoscale effects,e.g.,in nanophotonics,quantum computing,energy harvesting,and life sciences.Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks,which are available at the Technische Universitiit Ilmenau in the form of nanopositioning and nanomeasuring(NPM)machines.With this equipment,the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters. 展开更多
关键词 Nanomeasuring NANOPOSITIONING NANOMANUFACTURING Scale-spanning Tip-based Laser-based nanofabrication
原文传递
A beam flexure-based nanopositioning stage supporting laser direct-write nanofabrication
18
作者 Zhen Zhang Peng Wang +1 位作者 Peng Yan YingChun Guan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第8期50-55,共6页
A nanopositioning system of both millimetric stroke and nanometric tracking accuracy is a key component for nanofabrication in many applications. In this paper, a novel bi-axial beam-flexure nano servo stage is propos... A nanopositioning system of both millimetric stroke and nanometric tracking accuracy is a key component for nanofabrication in many applications. In this paper, a novel bi-axial beam-flexure nano servo stage is proposed to support a direct writing system for femtosecond laser nanofabrication. The important features of the stage lie in: a mirror symmetric instead of rotational symmetric configuration is adopted to restrict cross axis coupling, and a novel Z-shaped guidance module is proposed to achieve relative large linear stiffness range, in addition a redundant constraints module is introduced to increase off-axis stiffness of the stage. Mechanical analysis and system identification are provided, with which a feedback control algorithm demonstrates the tracking capability for laser fabrication purposes. Based on the fabricated XY nano-stage, real time control and measurements are deployed, demonstrating the millimetric operating workspace and 77.8 nm(RMS) error of tracking a circular trajectory. 展开更多
关键词 laser nanofabrication direct writing servo and control system
原文传递
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing 被引量:2
19
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
在线阅读 下载PDF
Stepwise colloidal lithography toward scalable and various planar chiral metamaterials 被引量:1
20
作者 Xiu Yang Yong Liu +8 位作者 Fei-Liang Chen Qian-Qi Lin Rohit Chikkaraddy Shan-Shan Huang Shi-Lin Xian Yi-Dong Hou Jing-Lei Du Liang-Ping Xia Chun-Lei Du 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期723-735,共13页
Chiral metamaterials(CMs)composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials,faci... Chiral metamaterials(CMs)composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials,facilitating practical applications in chiral biosensing,chiral emission,and display technology.However,the complex geometry of CMs improves the fabrication difficulty and hinders their scalable fabrication for practical applications,especially in the visible and ultraviolet wavelengths.One potential strategy is the colloidal lithography that enables parallel fabrication for scalable and various planar structures.Here,we demonstrate a stepwise colloidal lithography technique that uses sequential deposition from multiple CMs and expand their variety and complexity.The geometry and optical chirality of building blocks from single deposition are systematically investigated,and their combination enables a significant extension of the range of chiral patterns by multiple-step depositions.This approach resulted in a myriad of complex designs with different characteristic sizes,compositions,and shapes,which are particularly beneficial for the development of nanophotonic materials.In addition,we designed a flexible chiral device based on PDMS,which exhibits a good CD value and excellent stability even after multiple inward and outward bendings.The excellent compatibility to various substrates makes the planar CMs more flexible in practical applications in microfluidic biosensing. 展开更多
关键词 Chiral metamaterials Colloidal lithography NANOPHOTONICS Metasurfaces PLASMONICS nanofabricationS Flexible devices
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部