随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法...随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法。首先通过皮尔逊相关分析筛选关键特征,并利用孤立森林算法检测异常值,结合线性插值法和标准化完成数据预处理。随后,通过时间卷积网络(Temporal Convolutional Network,TCN)提取时序特征,再利用双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)网络捕获前后向时间依赖关系,并在输出端引入注意力机制聚焦关键时间步特征。最后,在Desert Knowledge Australia Solar Centre(DKASC)数据集上的对比实验表明,与传统LSTM、BiLSTM模型相比,提出的TCN-BiLSTM-Attention模型在预测精度、稳定性等方面均表现出一定优势。展开更多
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b...Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchroniza...Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies.展开更多
In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false ...In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates.This paper proposes a Syntax-Aware Hierarchical Attention Network(SAHAN)model,which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms.The SAHAN model first generates Syntax Independent Units(SIUs),which slices the code based on Abstract Syntax Tree(AST)and predefined grammar rules,retaining vulnerability-sensitive contexts.Following this,through a hierarchical attention mechanism,the local syntax-aware layer encodes fine-grained patterns within SIUs,while the global semantic correlation layer captures vulnerability chains across SIUs,achieving synergistic modeling of syntax and semantics.Experiments show that on benchmark datasets like QEMU,SAHAN significantly improves detection performance by 4.8%to 13.1%on average compared to baseline models such as Devign and VulDeePecker.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,an...Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.展开更多
Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data...Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data can be distorted by physiological factors and external variables,resulting in noisy brain networks.Static adjacency matrices are typically used in current mainstream methods,which neglect the need for dynamic updates and feature refinement.The second challenge stems from the strong reliance on long-range dependencies through self-attention in current methods,which can introduce redundant noise and increase computational complexity,especially in long-duration data.To address these challenges,the Attention-based Adaptive Graph ProbSparse Hybrid Network(AA-GPHN)is proposed.Brain network structures are dynamically optimised using variational inference and the information bottleneck principle,refining the adjacency matrix for improved epilepsy classification.A Linear Graph Convolutional Network(LGCN)is incorporated to focus on first-order neighbours,minimising the aggregation of distant information.Furthermore,a ProbSparse attention-based Informer(PAT)is introduced to adaptively filter long-range dependencies,enhancing efficiency.A joint optimisation loss function is applied to improve robustness in noisy environments.Experimental results on both patient-specific and cross-subject datasets demonstrate that AA-GPHN outperforms existing methods in seizure detection,showing superior effectiveness and generalisation.展开更多
Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accu...Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy.While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data,dual-modal diabetic retinopathy grading methods offer superior performance.However,the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to multi-scale variations.This paper addresses these issues by focusing on multi-scale retinal vessel segmentation,dual feature fusion,data augmentation,and attention-based grading.The proposed model aims to improve comprehensive segmentation for retinal images with varying vessel thicknesses.It employs a dual-branch parallel architecture that integrates a transformer encoder with a convolutional neural network encoder to extract local and global information for synergistic saliency learning.Besides that,the model uses residual structures and attention modules to extract critical lesions,enhancing the accuracy and reliability of diabetic retinopathy grading.To evaluate the efficacy of the proposed approach,this study compared it with other pre-trained publicly open models,ResNet152V2,ConvNext,Efficient Net,DenseNet,and Swin Transform,with the same developmental parameters.All models achieved approximately 85%accuracy with the same image preparation method.However,the proposed approach outperforms and optimizes existing models by achieving an accuracy of 99.17%,99.04%,and 99.24%,on Kaggle APTOS19,IDRiD,and EyePACS datasets,respectively.These results support the model’s utility in helping ophthalmologists diagnose diabetic retinopathy more rapidly and accurately.展开更多
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利...篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.展开更多
文摘随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法。首先通过皮尔逊相关分析筛选关键特征,并利用孤立森林算法检测异常值,结合线性插值法和标准化完成数据预处理。随后,通过时间卷积网络(Temporal Convolutional Network,TCN)提取时序特征,再利用双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)网络捕获前后向时间依赖关系,并在输出端引入注意力机制聚焦关键时间步特征。最后,在Desert Knowledge Australia Solar Centre(DKASC)数据集上的对比实验表明,与传统LSTM、BiLSTM模型相比,提出的TCN-BiLSTM-Attention模型在预测精度、稳定性等方面均表现出一定优势。
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Metaverse Support Program to Nurture the Best Talents(IITP-2024-RS-2023-00254529)grant funded by the Korea government(MSIT).
文摘Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
文摘Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies.
基金supported by the research start-up funds for invited doctor of Lanzhou University of Technology under Grant 14/062402。
文摘In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates.This paper proposes a Syntax-Aware Hierarchical Attention Network(SAHAN)model,which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms.The SAHAN model first generates Syntax Independent Units(SIUs),which slices the code based on Abstract Syntax Tree(AST)and predefined grammar rules,retaining vulnerability-sensitive contexts.Following this,through a hierarchical attention mechanism,the local syntax-aware layer encodes fine-grained patterns within SIUs,while the global semantic correlation layer captures vulnerability chains across SIUs,achieving synergistic modeling of syntax and semantics.Experiments show that on benchmark datasets like QEMU,SAHAN significantly improves detection performance by 4.8%to 13.1%on average compared to baseline models such as Devign and VulDeePecker.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金supported by the Natural Science Foundation of China,Grant No.62103052.
文摘Drone swarm systems,equipped with photoelectric imaging and intelligent target perception,are essential for reconnaissance and strike missions in complex and high-risk environments.They excel in information sharing,anti-jamming capabilities,and combat performance,making them critical for future warfare.However,varied perspectives in collaborative combat scenarios pose challenges to object detection,hindering traditional detection algorithms and reducing accuracy.Limited angle-prior data and sparse samples further complicate detection.This paper presents the Multi-View Collaborative Detection System,which tackles the challenges of multi-view object detection in collaborative combat scenarios.The system is designed to enhance multi-view image generation and detection algorithms,thereby improving the accuracy and efficiency of object detection across varying perspectives.First,an observation model for three-dimensional targets through line-of-sight angle transformation is constructed,and a multi-view image generation algorithm based on the Pix2Pix network is designed.For object detection,YOLOX is utilized,and a deep feature extraction network,BA-RepCSPDarknet,is developed to address challenges related to small target scale and feature extraction challenges.Additionally,a feature fusion network NS-PAFPN is developed to mitigate the issue of deep feature map information loss in UAV images.A visual attention module(BAM)is employed to manage appearance differences under varying angles,while a feature mapping module(DFM)prevents fine-grained feature loss.These advancements lead to the development of BA-YOLOX,a multi-view object detection network model suitable for drone platforms,enhancing accuracy and effectively targeting small objects.
基金funded in part by the National Natural Science Foundation of China(Nos.U20A20398,62076005,and 61906002)the Natural Science Foundation of Anhui Province(2008085MF191 and 2008085QF306)the University Synergy Innovation Programme of Anhui Province,China(GXXT-2021-002).
文摘Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data can be distorted by physiological factors and external variables,resulting in noisy brain networks.Static adjacency matrices are typically used in current mainstream methods,which neglect the need for dynamic updates and feature refinement.The second challenge stems from the strong reliance on long-range dependencies through self-attention in current methods,which can introduce redundant noise and increase computational complexity,especially in long-duration data.To address these challenges,the Attention-based Adaptive Graph ProbSparse Hybrid Network(AA-GPHN)is proposed.Brain network structures are dynamically optimised using variational inference and the information bottleneck principle,refining the adjacency matrix for improved epilepsy classification.A Linear Graph Convolutional Network(LGCN)is incorporated to focus on first-order neighbours,minimising the aggregation of distant information.Furthermore,a ProbSparse attention-based Informer(PAT)is introduced to adaptively filter long-range dependencies,enhancing efficiency.A joint optimisation loss function is applied to improve robustness in noisy environments.Experimental results on both patient-specific and cross-subject datasets demonstrate that AA-GPHN outperforms existing methods in seizure detection,showing superior effectiveness and generalisation.
基金funded by Princess Nourah bint Abdulrahman University and Researchers Supporting Project number(PNURSP2025R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy.While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data,dual-modal diabetic retinopathy grading methods offer superior performance.However,the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to multi-scale variations.This paper addresses these issues by focusing on multi-scale retinal vessel segmentation,dual feature fusion,data augmentation,and attention-based grading.The proposed model aims to improve comprehensive segmentation for retinal images with varying vessel thicknesses.It employs a dual-branch parallel architecture that integrates a transformer encoder with a convolutional neural network encoder to extract local and global information for synergistic saliency learning.Besides that,the model uses residual structures and attention modules to extract critical lesions,enhancing the accuracy and reliability of diabetic retinopathy grading.To evaluate the efficacy of the proposed approach,this study compared it with other pre-trained publicly open models,ResNet152V2,ConvNext,Efficient Net,DenseNet,and Swin Transform,with the same developmental parameters.All models achieved approximately 85%accuracy with the same image preparation method.However,the proposed approach outperforms and optimizes existing models by achieving an accuracy of 99.17%,99.04%,and 99.24%,on Kaggle APTOS19,IDRiD,and EyePACS datasets,respectively.These results support the model’s utility in helping ophthalmologists diagnose diabetic retinopathy more rapidly and accurately.
文摘篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.