期刊文献+
共找到63,802篇文章
< 1 2 250 >
每页显示 20 50 100
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation 被引量:1
1
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
2
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
CT-MFENet:Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation
3
作者 SHAO Dangguo YANG Yuanbiao +1 位作者 MA Lei YI Sanli 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期668-682,共15页
Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete v... Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net. 展开更多
关键词 retinal vessel segmentation context transformer(CT) multi-scale dense residual hybrid loss function global-local fusion
原文传递
Deep Multi-Scale and Attention-Based Architectures for Semantic Segmentation in Biomedical Imaging
4
作者 Majid Harouni Vishakha Goyal +2 位作者 Gabrielle Feldman Sam Michael Ty C.Voss 《Computers, Materials & Continua》 2025年第10期331-366,共36页
Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional a... Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research. 展开更多
关键词 Biomedical semantic segmentation multi-scale feature fusion fine-and coarse-scale features convolution operations shallow and deep blocks skip connections
在线阅读 下载PDF
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
5
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation ENCODER decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
CGMISeg:Context-Guided Multi-Scale Interactive for Efficient Semantic Segmentation
6
作者 Ze Wang Jin Qin +1 位作者 Chuhua Huang Yongjun Zhang 《Computers, Materials & Continua》 2025年第9期5811-5829,共19页
Semantic segmentation has made significant breakthroughs in various application fields,but achieving both accurate and efficient segmentation with limited computational resources remains a major challenge.To this end,... Semantic segmentation has made significant breakthroughs in various application fields,but achieving both accurate and efficient segmentation with limited computational resources remains a major challenge.To this end,we propose CGMISeg,an efficient semantic segmentation architecture based on a context-guided multi-scale interaction strategy,aiming to significantly reduce computational overhead while maintaining segmentation accuracy.CGMISeg consists of three core components:context-aware attention modulation,feature reconstruction,and crossinformation fusion.Context-aware attention modulation is carefully designed to capture key contextual information through channel and spatial attention mechanisms.The feature reconstruction module reconstructs contextual information from different scales,modeling key rectangular areas by capturing critical contextual information in both horizontal and vertical directions,thereby enhancing the focus on foreground features.The cross-information fusion module aims to fuse the reconstructed high-level features with the original low-level features during upsampling,promoting multi-scale interaction and enhancing the model’s ability to handle objects at different scales.We extensively evaluated CGMISeg on ADE20K,Cityscapes,and COCO-Stuff,three widely used datasets benchmarks,and the experimental results show that CGMISeg exhibits significant advantages in segmentation performance,computational efficiency,and inference speed,clearly outperforming several mainstream methods,including SegFormer,Feedformer,and SegNext.Specifically,CGMISeg achieves 42.9%mIoU(Mean Intersection over Union)and 15.7 FPS(Frames Per Second)on the ADE20K dataset with 3.8 GFLOPs(Giga Floating-point Operations Per Second),outperforming Feedformer and SegNeXt by 3.7%and 1.8%in mIoU,respectively,while also offering reduced computational complexity and faster inference.CGMISeg strikes an excellent balance between accuracy and efficiency,significantly enhancing both computational and inference performance while maintaining high precision,showcasing exceptional practical value and strong potential for widespread applications. 展开更多
关键词 Semantic segmentation context-aware attention modulation feature reconstruction cross-information fusion
在线阅读 下载PDF
Multi-Scale Time Series Segmentation Network Based on Eddy Current Testing for Detecting Surface Metal Defects
7
作者 Xiaorui Li Xiaojuan Ban +6 位作者 Haoran Qiao Zhaolin Yuan Hong-Ning Dai Chao Yao Yu Guo Mohammad S.Obaidat George Q.Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期528-538,共11页
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro... In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score. 展开更多
关键词 Eddy current testing nondestructive testing semantic segmentation time series analysis
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
8
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
9
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation
10
作者 Yanting Zhang Qiyue Liu +4 位作者 Chuanzhao Tian Xuewen Li Na Yang Feng Zhang Hongyue Zhang 《Computers, Materials & Continua》 2026年第1期2086-2110,共25页
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an... High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet. 展开更多
关键词 Multiscale context attention mechanism remote sensing images semantic segmentation
在线阅读 下载PDF
Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring
11
作者 Moneerah Alotaibi 《Computers, Materials & Continua》 2026年第1期1629-1648,共20页
Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and stru... Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches. 展开更多
关键词 Machine learning semantic segmentation remote sensors deep learning object monitoring system
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
12
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
13
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention
14
作者 Seyong Jin Muhammad Fayaz +2 位作者 L.Minh Dang Hyoung-Kyu Song Hyeonjoon Moon 《Computers, Materials & Continua》 2026年第1期511-533,共23页
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b... Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation. 展开更多
关键词 Attention mechanism brain tumor segmentation channel-wise attention decoder deep learning medical imaging MRI TRANSFORMER U-Net
在线阅读 下载PDF
Deep Learning-Based Toolkit Inspection:Object Detection and Segmentation in Assembly Lines
15
作者 Arvind Mukundan Riya Karmakar +1 位作者 Devansh Gupta Hsiang-Chen Wang 《Computers, Materials & Continua》 2026年第1期1255-1277,共23页
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t... Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities. 展开更多
关键词 Tool detection image segmentation object detection assembly line automation Industry 4.0 Intel RealSense deep learning toolkit verification RGB-D imaging quality assurance
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
16
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Watershed segmentation based on hierarchical multi-scale modification of morphological gradient 被引量:1
17
作者 WANG Xiao-peng ZHAO Jun-jun +1 位作者 MA Peng YAO Li-juan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第1期60-67,共8页
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to... Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours. 展开更多
关键词 watershed segmentation gradient modification hierarchical multi-scale morphological filtering structuring element
在线阅读 下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model 被引量:1
18
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
在线阅读 下载PDF
A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation 被引量:1
19
作者 Chaoyang Xia Jing Peng +1 位作者 Zongqing Ma Xiaojie Li 《Journal of Information Hiding and Privacy Protection》 2019年第3期109-117,共9页
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ... Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%. 展开更多
关键词 Cardiac magnetic resonance imaging multi-scale semantic segmentation convolutional neural networks
暂未订购
Multi-Scale Image Segmentation Model for Fine-Grained Recognition of Zanthoxylum Rust 被引量:1
20
作者 Fan Yang Jie Xu +5 位作者 Haoliang Wei Meng Ye Mingzhu Xu Qiuru Fu Lingfei Ren Zhengwen Huang 《Computers, Materials & Continua》 SCIE EI 2022年第5期2963-2980,共18页
Zanthoxylum bungeanum Maxim,generally called prickly ash,is widely grown in China.Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum.Traditional method for recognizing the degree of i... Zanthoxylum bungeanum Maxim,generally called prickly ash,is widely grown in China.Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum.Traditional method for recognizing the degree of infection of Zanthoxylum rust mainly rely on manual experience.Due to the complex colors and shapes of rust areas,the accuracy of manual recognition is low and difficult to be quantified.In recent years,the application of artificial intelligence technology in the agricultural field has gradually increased.In this paper,based on the DeepLabV2 model,we proposed a Zanthoxylum rust image segmentation model based on the FASPP module and enhanced features of rust areas.This paper constructed a fine-grained Zanthoxylum rust image dataset.In this dataset,the Zanthoxylum rust image was segmented and labeled according to leaves,spore piles,and brown lesions.The experimental results showed that the Zanthoxylum rust image segmentation method proposed in this paper was effective.The segmentation accuracy rates of leaves,spore piles and brown lesions reached 99.66%,85.16%and 82.47%respectively.MPA reached 91.80%,and MIoU reached 84.99%.At the same time,the proposed image segmentation model also had good efficiency,which can process 22 images per minute.This article provides an intelligent method for efficiently and accurately recognizing the degree of infection of Zanthoxylum rust. 展开更多
关键词 Zanthoxylum rust image segmentation deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部