Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional m...The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional measurement methods involving large-angle tilting or rotation may pose safety risks.In light of the characteristics of large aircraft and in combination with existing measurement methods,we design a mass and centroid measurement method based on four-point support and small-angle tilting,and develop a set of mass and centroid testing system.This method obtains the intersection point of the gravity action line in the product coordinate system through coordinate transformation in two postures,thereby obtaining the three-dimensional centroid of the aircraft.We first elaborate on the principle of this method in detail,then introduce the composition of the equipment,and analyze the structural stress of key components.Finally,experimental verification and uncertainty analysis are carried out.Experimental verification shows that the maximum deviation of the mass measurement accuracy is less than 0.02%,the centroid measurement accuracy in the X direction is±0.15 mm,in the Y direction it is±0.21 mm,and in the Z direction it is±0.19 mm.展开更多
AIM: Rectal carcinoid tumors smaller than 10 mm can be resected with local excision using endoscopy. In order to remove rectal carcinoid tumors completely, we evaluated endoscopic mucosal resection with a ligation de...AIM: Rectal carcinoid tumors smaller than 10 mm can be resected with local excision using endoscopy. In order to remove rectal carcinoid tumors completely, we evaluated endoscopic mucosal resection with a ligation device in this pilot control randomized study. METHODS: Fifteen patients were diagnosed with rectal carcinoid tumor (less than 10 mm) in our hospital from 1993 to 2002. There were 9 males and 6 females, with a mean age 61.5 years (range, 34-77 years). The patientshad no complaints of carcinoid syndrome symptoms. Fifteen patients were randomly divided into 2 groups: 7 carcinoid tumors were treated by conventional endoscopic resection, and 8 carcinoid tumors were treated by endoscopic resection using a ligation device. RESULTS: All rectal carcinoid tumors were located at the middle to distal rectum. The size of the tumors varied from 3 mm to 10 mm and background characteristics of the patients were not different in the two groups. The rate of complete removal of carcinoid tumors using a ligation device (100%, 8/8) was significantly higher than that of conventional endoscopic resection (57.1%, 4/7). The three patients had tumor involvement of deep margin, for which additional treatment was performed. No complications occurred during or after endoscopic resection using a ligation device. All patients in the both groups were alive during the 3-year observation period. CONCLUSION: Endoscopic resection using a ligation device is a useful and safe method for resection of small rectal carcinoid tumors.展开更多
Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich stru...Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich structure are investigated and studied using experimental and numerical coupled methods.Three impact energy levels and five Distances Between Impact Positions(DBIP)are considered in details,and representative impact characteristics are compared to reveal the association between Compression After Impact(CAI)strength and DBIP.Results indicate that the interference between the multi-point impact events has a dominant effect on CAI strength when DBIP is small,and the variation in bending stiffness induced by the boundary effect is the dominant factor affecting CAI strength when DBIP ranges from 20 mm to 60 mm.In addition,matrix damage represents the primary damage mode in multi-point impact,and the calculated ratio of energy absorbed by the top face sheet and honeycomb core,in relation to the total absorbed energy,serves as a clear indicator of the damage severity experienced by both components.This work is enlightening for the structural design of impact-resistant composites.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been a...Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites.Due to their favourable properties,particle-based methods provide a convenient platform to model failure or fracture of these composites.Smooth particle hydrodynamics(SPH)is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting.One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions.In this paper,a masterslave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method.The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach.A minimum cut-off value-based error criteria is employed to improve the computational efficiency of the proposed methodology.In addition,the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency.The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.展开更多
In this paper,a compact difference scheme is established for the heat equations with multi-point boundary value conditions.The truncation error of the difference scheme is O(τ2+h^4),where t and h are the temporal ste...In this paper,a compact difference scheme is established for the heat equations with multi-point boundary value conditions.The truncation error of the difference scheme is O(τ2+h^4),where t and h are the temporal step size and the spatial step size.A prior estimate of the difference solution in a weighted norm is obtained.The unique solvability,stability and convergence of the difference scheme are proved by the energy method.The theoretical statements for the solution of the difference scheme are supported by numerical examples.展开更多
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金supported by National Natural Science Foundation of China-Youth Program(No.62303420)。
文摘The precise acquisition of the quality characteristic parameters of large aircraft directly affects its performance characteristics.For large aircrafts such as missiles and rockets with internal fillings,traditional measurement methods involving large-angle tilting or rotation may pose safety risks.In light of the characteristics of large aircraft and in combination with existing measurement methods,we design a mass and centroid measurement method based on four-point support and small-angle tilting,and develop a set of mass and centroid testing system.This method obtains the intersection point of the gravity action line in the product coordinate system through coordinate transformation in two postures,thereby obtaining the three-dimensional centroid of the aircraft.We first elaborate on the principle of this method in detail,then introduce the composition of the equipment,and analyze the structural stress of key components.Finally,experimental verification and uncertainty analysis are carried out.Experimental verification shows that the maximum deviation of the mass measurement accuracy is less than 0.02%,the centroid measurement accuracy in the X direction is±0.15 mm,in the Y direction it is±0.21 mm,and in the Z direction it is±0.19 mm.
文摘AIM: Rectal carcinoid tumors smaller than 10 mm can be resected with local excision using endoscopy. In order to remove rectal carcinoid tumors completely, we evaluated endoscopic mucosal resection with a ligation device in this pilot control randomized study. METHODS: Fifteen patients were diagnosed with rectal carcinoid tumor (less than 10 mm) in our hospital from 1993 to 2002. There were 9 males and 6 females, with a mean age 61.5 years (range, 34-77 years). The patientshad no complaints of carcinoid syndrome symptoms. Fifteen patients were randomly divided into 2 groups: 7 carcinoid tumors were treated by conventional endoscopic resection, and 8 carcinoid tumors were treated by endoscopic resection using a ligation device. RESULTS: All rectal carcinoid tumors were located at the middle to distal rectum. The size of the tumors varied from 3 mm to 10 mm and background characteristics of the patients were not different in the two groups. The rate of complete removal of carcinoid tumors using a ligation device (100%, 8/8) was significantly higher than that of conventional endoscopic resection (57.1%, 4/7). The three patients had tumor involvement of deep margin, for which additional treatment was performed. No complications occurred during or after endoscopic resection using a ligation device. All patients in the both groups were alive during the 3-year observation period. CONCLUSION: Endoscopic resection using a ligation device is a useful and safe method for resection of small rectal carcinoid tumors.
基金Supported by the National Key R&D Program of China(2023YFB3709602,2023YFB3709603)National Natural Science Foundation of China(12372141)the Key R&D Program in Shaanxi Province(2024GH-ZDXM-27).
文摘Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich structure are investigated and studied using experimental and numerical coupled methods.Three impact energy levels and five Distances Between Impact Positions(DBIP)are considered in details,and representative impact characteristics are compared to reveal the association between Compression After Impact(CAI)strength and DBIP.Results indicate that the interference between the multi-point impact events has a dominant effect on CAI strength when DBIP is small,and the variation in bending stiffness induced by the boundary effect is the dominant factor affecting CAI strength when DBIP ranges from 20 mm to 60 mm.In addition,matrix damage represents the primary damage mode in multi-point impact,and the calculated ratio of energy absorbed by the top face sheet and honeycomb core,in relation to the total absorbed energy,serves as a clear indicator of the damage severity experienced by both components.This work is enlightening for the structural design of impact-resistant composites.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
基金National Key R&D Program of China(No.2018YFC0809700,No.2017YFC0803300)National Natural Science Foundation of China(No.71673158,No.11702046).
文摘Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites.Due to their favourable properties,particle-based methods provide a convenient platform to model failure or fracture of these composites.Smooth particle hydrodynamics(SPH)is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting.One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions.In this paper,a masterslave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method.The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach.A minimum cut-off value-based error criteria is employed to improve the computational efficiency of the proposed methodology.In addition,the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency.The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.
基金The research is supported by the National Natural Science Foundation of China(No.11671081)the Fundamental Research Funds for the Central Universities(No.242017K41044).
文摘In this paper,a compact difference scheme is established for the heat equations with multi-point boundary value conditions.The truncation error of the difference scheme is O(τ2+h^4),where t and h are the temporal step size and the spatial step size.A prior estimate of the difference solution in a weighted norm is obtained.The unique solvability,stability and convergence of the difference scheme are proved by the energy method.The theoretical statements for the solution of the difference scheme are supported by numerical examples.