期刊文献+
共找到11,490篇文章
< 1 2 250 >
每页显示 20 50 100
Using AdaBoost Meta-Learning Algorithm for Medical News Multi-Document Summarization 被引量:1
1
作者 Mahdi Gholami Mehr 《Intelligent Information Management》 2013年第6期182-190,共9页
Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss abo... Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss about multi-document summarization that differs from the single one in which the issues of compression, speed, redundancy and passage selection are critical in the formation of useful summaries. Since the number and variety of online medical news make them difficult for experts in the medical field to read all of the medical news, an automatic multi-document summarization can be useful for easy study of information on the web. Hence we propose a new approach based on machine learning meta-learner algorithm called AdaBoost that is used for summarization. We treat a document as a set of sentences, and the learning algorithm must learn to classify as positive or negative examples of sentences based on the score of the sentences. For this learning task, we apply AdaBoost meta-learning algorithm where a C4.5 decision tree has been chosen as the base learner. In our experiment, we use 450 pieces of news that are downloaded from different medical websites. Then we compare our results with some existing approaches. 展开更多
关键词 multi-document summariZATION Machine Learning Decision Trees ADABOOST C4.5 MEDICAL Document summariZATION
在线阅读 下载PDF
Density peaks clustering based integrate framework for multi-document summarization 被引量:2
2
作者 BaoyanWang Jian Zhang +1 位作者 Yi Liu Yuexian Zou 《CAAI Transactions on Intelligence Technology》 2017年第1期26-30,共5页
We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met... We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10]. 展开更多
关键词 multi-document summarization Integrated score framework Density peaks clustering Sentences rank
在线阅读 下载PDF
Constructing a taxonomy to support multi-document summarization of dissertation abstracts
3
作者 KHOO Christopher S.G. GOH Dion H. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第11期1258-1267,共10页
This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level an... This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level and micro-level discourse structure to identify important information that can be extracted from dissertation abstracts, and then uses a variable-based framework to integrate and organize extracted information across dissertation abstracts. This framework focuses more on research concepts and their research relationships found in sociology dissertation abstracts and has a hierarchical structure. A taxonomy is constructed to support the summarization process in two ways: (1) helping to identify important concepts and relations expressed in the text, and (2) providing a structure for linking similar concepts in different abstracts. This paper describes the variable-based framework and the summarization process, and then reports the construction of the taxonomy for supporting the summarization process. An example is provided to show how to use the constructed taxonomy to identify important concepts and integrate the concepts extracted from different abstracts. 展开更多
关键词 Text summarization Automatic multi-document summarization Variable-based framework Digital library
在线阅读 下载PDF
Automatic Multi-Document Summarization Based on Keyword Density and Sentence-Word Graphs
4
作者 YE Feiyue XU Xinchen 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期584-592,共9页
As a fundamental and effective tool for document understanding and organization, multi-document summarization enables better information services by creating concise and informative reports for large collections of do... As a fundamental and effective tool for document understanding and organization, multi-document summarization enables better information services by creating concise and informative reports for large collections of documents. In this paper, we propose a sentence-word two layer graph algorithm combining with keyword density to generate the multi-document summarization, known as Graph & Keywordp. The traditional graph methods of multi-document summarization only consider the influence of sentence and word in all documents rather than individual documents. Therefore, we construct multiple word graph and extract right keywords in each document to modify the sentence graph and to improve the significance and richness of the summary. Meanwhile, because of the differences in the words importance in documents, we propose to use keyword density for the summaries to provide rich content while using a small number of words. The experiment results show that the Graph & Keywordp method outperforms the state of the art systems when tested on the Duc2004 data set. Key words: multi-document, graph algorithm, keyword density, Graph & Keywordp, Due2004 展开更多
关键词 multi-document graph algorithm keyword density Graph & Keywordρ Duc2004
原文传递
Unsupervised Graph-Based Tibetan Multi-Document Summarization
5
作者 Xiaodong Yan Yiqin Wang +3 位作者 Wei Song Xiaobing Zhao A.Run Yang Yanxing 《Computers, Materials & Continua》 SCIE EI 2022年第10期1769-1781,共13页
Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good res... Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good results in the task of text summarization both in Chinese and English,but the research of text summarization in low-resource languages is still in the exploratory stage,especially in Tibetan.What’s more,there is no large-scale annotated corpus for text summarization.The lack of dataset severely limits the development of low-resource text summarization.In this case,unsupervised learning approaches are more appealing in low-resource languages as they do not require labeled data.In this paper,we propose an unsupervised graph-based Tibetan multi-document summarization method,which divides a large number of Tibetan news documents into topics and extracts the summarization of each topic.Summarization obtained by using traditional graph-based methods have high redundancy and the division of documents topics are not detailed enough.In terms of topic division,we adopt two level clustering methods converting original document into document-level and sentence-level graph,next we take both linguistic and deep representation into account and integrate external corpus into graph to obtain the sentence semantic clustering.Improve the shortcomings of the traditional K-Means clustering method and perform more detailed clustering of documents.Then model sentence clusters into graphs,finally remeasure sentence nodes based on the topic semantic information and the impact of topic features on sentences,higher topic relevance summary is extracted.In order to promote the development of Tibetan text summarization,and to meet the needs of relevant researchers for high-quality Tibetan text summarization datasets,this paper manually constructs a Tibetan summarization dataset and carries out relevant experiments.The experiment results show that our method can effectively improve the quality of summarization and our method is competitive to previous unsupervised methods. 展开更多
关键词 multi-document summarization text clustering topic feature fusion graphic model
在线阅读 下载PDF
TWO-STAGE SENTENCE SELECTION APPROACH FOR MULTI-DOCUMENT SUMMARIZATION
6
作者 Zhang Shu Zhao Tiejun Zheng Dequan Zhao Hua 《Journal of Electronics(China)》 2008年第4期562-567,共6页
Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summar... Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summary is proposed,which has two stages,the acquisition of acandidate sentence set and the optimum selection of sentence.At the first stage,the candidate sentenceset is obtained by redundancy-based sentence selection approach.At the second stage,optimum se-lection of sentences is proposed to delete sentences in the candidate sentence set according to itscontribution to the whole set until getting the appointed summary length.With a test corpus,theROUGE value of summaries gotten by the proposed approach proves its validity,compared with thetraditional method of sentence selection.The influence of the token chosen in the two-stage sentenceselection approach on the quality of the generated summaries is analyzed. 展开更多
关键词 TWO-STAGE Sentence selection approach multi-document summarization
在线阅读 下载PDF
Research on multi-document summarization based on latent semantic indexing
7
作者 秦兵 刘挺 +1 位作者 张宇 李生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期91-94,共4页
A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decompos... A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decomposition (SVD) to reduce the dimension of the matrix and extract features, and then the sentence similarity is computed. The sentences are clustered according to similarity of sentences. The centroid sentences are selected from each class. Finally, the selected sentences are ordered to generate the summarization. The evaluation and results are presented, which prove that the proposed methods are efficient. 展开更多
关键词 multi-document summarization LSI (latent semantic indexing) CLUSTERING
在线阅读 下载PDF
Multi-Document Summarization Model Based on Integer Linear Programming
8
作者 Rasim Alguliev Ramiz Aliguliyev Makrufa Hajirahimova 《Intelligent Control and Automation》 2010年第2期105-111,共7页
This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main c... This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main content of the text, and summaries are created by extracting the highest scored sentences from the original document. The model formalized as a multiobjective integer programming problem. An advantage of this model is that it can cover the main content of source (s) and provide less redundancy in the generated sum- maries. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, have been used the similarity of sentences to the original document and the similarity between sentences. Performance evaluation is conducted by comparing summarization outputs with manual summaries of DUC2004 dataset. Experiments showed that the proposed approach outperforms the related methods. 展开更多
关键词 multi-document summariZATION Content COVERAGE LESS REDUNDANCY INTEGER Linear Programming
在线阅读 下载PDF
Chinese multi-document personal name disambiguation 被引量:8
9
作者 Wang Houfeng(王厚峰) Mei Zheng 《High Technology Letters》 EI CAS 2005年第3期280-283,共4页
This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors deno... This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors denoting whether a personal name occurs the text the biographical word Boolean vector representing title, occupation and so forth, and the feature vector with real values. Then, by combining a heuristic strategy based on Boolean vectors with an agglomeratie clustering algorithm based on feature vectors, it seeks to resolve multi-document personal name coreference. Experimental results show that this approach achieves a good performance by testing on "Wang Gang" corpus. 展开更多
关键词 personal name disambiguation Chinese multi-document heuristic strategy. agglomerative clustering
在线阅读 下载PDF
Multi-Head Encoder Shared Model Integrating Intent and Emotion for Dialogue Summarization
10
作者 Xinlai Xing Junliang Chen +2 位作者 Xiaochuan Zhang Shuran Zhou Runqing Zhang 《Computers, Materials & Continua》 2025年第2期2275-2292,共18页
In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challen... In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks. 展开更多
关键词 Dialogue summaries dialogue state tracking emotion recognition task-oriented dialogue system pre-trained language model
在线阅读 下载PDF
基于护理助手App的BOPPPS教学模式在新入职护士规范化培训中的应用
11
作者 王瑞方 郭珂清 +5 位作者 杜章楠 冯珊珊 孙艳丽 郭军芳 魏华 丁敬艳 《河南医学研究》 2026年第1期183-188,共6页
目的探讨基于护理助手App的导学互动的加式教育(BOPPPS)教学模式在新入职护士规范化培训中的应用效果。方法前瞻性以濮阳市安阳地区医院2023年9月新入职规范化培训护士86名为研究对象,采用抓取随机球法分为对照组和试验组,各43名。对照... 目的探讨基于护理助手App的导学互动的加式教育(BOPPPS)教学模式在新入职护士规范化培训中的应用效果。方法前瞻性以濮阳市安阳地区医院2023年9月新入职规范化培训护士86名为研究对象,采用抓取随机球法分为对照组和试验组,各43名。对照组采用传统教学模式,试验组采用基于护理助手App的BOPPPS教学模式。比较两组新入职护士规培出科考试成绩、护士临床实践能力评价量表、护理人员自主学习能力评价量表、临床护理带教老师行为评价量表、教学效果满意度量表评分。结果试验组新入职护士的基础知识、案例分析及总成绩分别为(50.46±4.35)分、(33.10±3.68)分、(84.32±8.26)分,高于对照组的(47.30±5.12)分、(29.54±3.05)分、(77.18±6.44)分,差异有统计学意义(P<0.05);试验组新入职护士的临床实践能力中核心制度、岗位职责、工作能力、疾病护理、技术操作、常用化验检查结果解读、常用药物相关知识、护理文书、应急能力评分分别为(7.68±1.26)分、(8.12±0.92)分、(8.30±0.86)分、(8.03±0.94)分、(7.89±1.36)分、(8.21±0.87)分、(7.65±1.14)分、(7.42±1.35)分、(7.58±1.29)分,高于对照组的(6.95±1.35)分、(7.02±1.35)分、(6.58±1.33)分、(6.45±1.29)分、(6.54±1.02)分、(7.38±1.12)分、(6.98±1.02)分、(6.59±1.10)分、(6.87±1.13)分,差异有统计学意义(P<0.05),劳动纪律评分为(6.34±1.36)分与(6.02±1.52)分比较,差异无统计学意义(P>0.05);试验组新入职护士的自主学习能力中自我动机信念、自我监控与调节、任务分析、自我评价及总分分别为(58.45±4.36)分、(38.98±5.02)分、(22.36±3.75)分、(15.24±2.20)分、(133.87±12.58)分,高于对照组的(50.62±5.48)分、(34.25±4.76)分、(16.84±3.02)分、(12.45±2.14)分、(113.50±10.46)分,差异有统计学意义(P<0.05);试验组临床护理带教老师行为中教学技巧、与学生的关系、知识与技能、个性及总分分别为(103.64±5.29)分、(52.87±4.55)分、(43.15±3.18)分、(48.62±4.24)分、(247.18±21.60)分,高于对照组的(90.48±6.45)分、(45.52±4.86)分、(38.74±3.20)分、(44.59±5.84)分、(215.72±20.53)分,差异有统计学意义(P<0.05);试验组新入职护士的教育效果满意度(97.67%)高于对照组(81.40%),差异有统计学意义(P<0.05)。结论基于护理助手App的BOPPPS教学模式有利于提升临床带教老师行为能力,提高新入职护士的综合素质及教学满意度。 展开更多
关键词 导学互动的加式教育 手机 教学 护士 规范化培训
暂未订购
多组学拓展骨质疏松症的新治疗靶点:亚洲、欧洲项目组数据分析
12
作者 陈勇喜 《中国组织工程研究》 北大核心 2026年第24期6382-6389,共8页
背景:随着中国老龄化进程的加快,骨质疏松症患者也逐渐增多,而全基因组关联研究和单细胞转录测序的发展使得研究者们可通过将各组学研究数据相结合以发现更多与骨质疏松症相关的基因。目的:通过整合亚洲、欧洲人群的全基因组关联研究和... 背景:随着中国老龄化进程的加快,骨质疏松症患者也逐渐增多,而全基因组关联研究和单细胞转录测序的发展使得研究者们可通过将各组学研究数据相结合以发现更多与骨质疏松症相关的基因。目的:通过整合亚洲、欧洲人群的全基因组关联研究和转录组学,基于汇总统计数据的孟德尔随机化拓展骨质疏松症新的治疗靶点。方法:通过整合来自多个组织(血液、肌肉-骨骼)的顺式表达数量性状位点和蛋白质数量性状位点数据集(基因-组织表达项目组V.8选取了人类血液与骨骼-肌肉两种组织的表达数量性状位点数据集,基因-组织表达项目组是研究基因表达在不同组织/器官中变异及其与遗传调控关系的大型国际合作项目)及骨质疏松症全基因组关联研究数据(FinnGen数据库2021年发布的关于欧洲人种骨质疏松症的全基因组关联研究数据,FinnGen是芬兰的一个大型基因组研究项目);从日本生物银行数据库获取的2020年发布关于东亚人群的大规模全基因组关联研究,是日本主导的大规模人群队列研究项目,使用基于汇总统计数据的孟德尔随机化方法来鉴定骨质疏松症的相关基因,并使用共定位分析、单细胞测序及富集分析对已鉴定出的相关基因做进一步分析。所有数据均来自于已发表的研究或公开可用的数据,均已提供伦理审批书和知情同意书。结果与结论:①基于汇总统计数据的孟德尔随机化分析一共确定了64个(去除重复基因后)与骨质疏松症显著相关的基因,其中人类白细胞抗原(HLA)等位基因HLA-DQA1、HLA-DQA2、HLA-DQB1、HLA-DQB2和HLA-DRB5在2个结局数据集中得到了相互验证,具有显著相关性;②进一步的共定位分析表明,HLA-DQA2、HLA-DQB1具有共定位的证据(后验概率PPH4>0.8);③蛋白质数量性状位点分析结果表明,血浆中高水平的HLA-DQA2与骨质疏松症风险降低相关;④在单细胞测序分析方面,在骨质疏松症的免疫微环境中,树突状细胞、B细胞、巨噬细胞和中性粒细胞丰度较其他细胞群明显升高;⑤富集分析结果表明,鉴定出的基因在组织相容性复合物Ⅱ分子抗原呈递途径富集;⑥此次研究通过生物信息学结合亚洲、欧洲人群的全基因组关联数据,初步确定了几个以前尚未报道过的与骨质疏松症相关的基因,研究者们可在临床试验中进一步探索上述基因作为骨质疏松症新的治疗途径的潜力。 展开更多
关键词 全基因组关联研究 单细胞测序 骨质疏松症 基于汇总数据的孟德尔随机化
暂未订购
DYRK2:基于东亚和欧洲人群揭示类风湿关节炎合并骨质疏松症的治疗新靶点
13
作者 吴治林 何秦 +4 位作者 王枰稀 石现 袁松 张骏 王浩 《中国组织工程研究》 北大核心 2026年第6期1569-1579,共11页
背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、... 背景:研究表明,类风湿关节炎与骨质疏松症呈正相关趋势,但因果关系和相关机制仍未得到证实。随着计算机科学和生命科学的交叉融合,基于全基因组关联研究数据和转录组测序数据进行孟德尔随机化和生信分析,可以评估两疾病间的因果关系、探索相关机制以及挖掘治疗靶点,这将利于类风湿关节炎合并骨质疏松症的精准治疗。目的:采用双样本孟德尔随机化分析类风湿关节炎和骨质疏松症间的因果关系,同时基于汇总数据的孟德尔随机化分析和生信分析挖掘潜在共病靶点和靶向药物,旨在为类风湿关节炎合并骨质疏松症的机制探索和精准治疗提供理论依据。方法:①从基于亚洲人群和欧洲人群的GWAS Catalog、IEU Open GWAS、FinnGen以及eQTLGen数据库下载类风湿关节炎、骨质疏松症和顺式表达数量性状位点的全基因组关联研究数据,用于双样本孟德尔随机化和基于汇总数据的孟德尔随机化分析。②从GEO数据库下载类风湿关节炎的转录组测序数据(GSE93272和GSE15573),用于生物信息学分析。③以逆方差加权法作为主要分析方法,进行类风湿关节炎和骨质疏松症之间的正向和反向双样本孟德尔随机化分析,并用MR Egger法、简单模式法、加权中位数法和加权模式法对结果加以佐证。④基于汇总数据的孟德尔随机化分析鉴定与类风湿关节炎和骨质疏松症相关的基因,并基于交叉分析挖掘出类风湿关节炎和骨质疏松症共病靶点。同时,基于生信分析和细胞实验验证共病靶点的生物学功能。⑤此外,基于DYRK2构建类风湿关节炎风险预测诺莫图,通过受试者特征曲线、矫正曲线和决策曲线验证预测性能。最后,基于Enrichr数据库挖掘靶点潜在药物并进行分子对接。结果与结论:①正向孟德尔随机化分析结果显示,除外GCST90044540和GCST90086118无统计学意义,其他所有结果均表明类风湿关节炎和骨质疏松症间存在显著因果关系,并且呈正相关。②反向孟德尔随机化分析结果提示,骨质疏松症和类风湿关节炎间未见显著因果关系。③基于汇总数据的孟德尔随机化分析共鉴定出412和344个与类风湿关节炎和骨质疏松症正相关的基因,421和347个负相关基因。基于交叉分析得到26个共病基因。其中,DYRK2是潜在治疗靶点,后续生信分析和细胞实验证实DYRK2在类风湿关节炎和骨质疏松症的进展过程中发挥重要作用。④此外,构建的诺莫图具有出色的预测性能。最后,挖掘出4个DYRK2的潜在靶向药物(Undecanoic Acid、Metyrapone、JNJ-38877605和ACA),分子对接也证明具有可靠的靶向能力。⑤总之,基于亚洲人群和欧洲人群的全基因组关联研究数据证明了类风湿关节炎和骨质疏松症在遗传学层面存在着因果关系,DYRK2是潜在治疗靶点,有4种小分子是潜在靶向药物。 展开更多
关键词 类风湿关节炎 骨质疏松症 孟德尔随机化 基于汇总数据的孟德尔随机化 共病基因 DYRK2
暂未订购
化繁为简:视觉集合感知的神经机制
14
作者 孙焕翔 张帆 +2 位作者 李思嘉 张秀玲 蒋毅 《心理科学进展》 北大核心 2026年第2期251-270,共20页
集合感知是视觉系统高效地从复杂的外部世界中提取均值、方差等概要信息的过程,这对于人类适应环境具有重要意义。对其神经机制的研究有助于理解视觉系统如何实现高效的抽象表征。本文总结了集合感知的时间进程,综述了这种整合机制的理... 集合感知是视觉系统高效地从复杂的外部世界中提取均值、方差等概要信息的过程,这对于人类适应环境具有重要意义。对其神经机制的研究有助于理解视觉系统如何实现高效的抽象表征。本文总结了集合感知的时间进程,综述了这种整合机制的理论模型和实证证据,并区分了集合编码与成员或个体编码的功能及神经基础。在现有研究成果的基础上,提出了“粗略-细节-校准”的整合模型:大脑在加工不同水平的视觉特征时,可能依次存在领域通用与特异性机制,早期依赖于通用性的大细胞通路的粗略加工,随后是特异性的、依赖于各特征脑区小细胞通路的相对精细表征,最后通过前馈-反馈循环迭代进行校准。未来研究可关注视觉集合感知的神经通路与具体脑区、前馈与反馈的角色、信息编码的通用性与特异性,以及发育与经验对集合感知的影响。 展开更多
关键词 集合感知 统计概要表征 知觉整合 时间进程 神经机制
在线阅读 下载PDF
患儿X连锁低磷性佝偻病评估和管理的证据总结
15
作者 甘尚权 蚁淳 +3 位作者 陈彩琳 吴景 丁如 熊学军 《护理研究》 北大核心 2026年第2期261-269,共9页
目的:汇总患儿X连锁低磷性佝偻病(XLH)的评估和管理证据,为临床实践提供循证依据。方法:针对患儿XLH的评估和管理提出问题,按照“6S”循证模型检索国内外相关学会网站及数据库中相关文献,对文献进行质量评价、证据提取、分级和汇总。结... 目的:汇总患儿X连锁低磷性佝偻病(XLH)的评估和管理证据,为临床实践提供循证依据。方法:针对患儿XLH的评估和管理提出问题,按照“6S”循证模型检索国内外相关学会网站及数据库中相关文献,对文献进行质量评价、证据提取、分级和汇总。结果:共纳入13篇文献,包括4篇指南、1篇系统评价、2篇临床决策、6篇专家共识。形成的患儿XLH评估和管理证据包括评估和干预2个主题,共临床表现、实验室检查、影像学检查、常规治疗、布罗索尤单抗治疗、手术干预、口腔管理、并发症、遗传咨询和产前诊断、随访10个证据类别,涉及30条证据。结论:本研究对患儿XLH评估和管理的证据进行总结,临床医护人员可基于证据并结合患儿特征、病情进展有选择地进行证据转化。 展开更多
关键词 儿童 X连锁低磷性佝偻病 评估 管理 证据总结 循证护理
暂未订购
超重或肥胖多囊卵巢综合征患者体重管理的最佳证据总结
16
作者 王冰璐 申泉 +3 位作者 雷俊 彭婀娜 瞿佳 朱姝娟 《生殖医学杂志》 2026年第1期71-79,共9页
目的检索、评价和汇总超重或肥胖多囊卵巢综合征(PCOS)患者体重管理的相关证据,为临床提供循证依据和参考。方法根据“6S”金字塔模型,系统检索计算机决策支持系统、指南网站、专业协会网站及数据库中超重或肥胖PCOS患者体重管理的相关... 目的检索、评价和汇总超重或肥胖多囊卵巢综合征(PCOS)患者体重管理的相关证据,为临床提供循证依据和参考。方法根据“6S”金字塔模型,系统检索计算机决策支持系统、指南网站、专业协会网站及数据库中超重或肥胖PCOS患者体重管理的相关文献,检索时限为建库至2024年12月。结果共纳入20篇文献,包括3篇临床决策、5篇指南、2篇证据总结、2篇系统评价和8篇专家共识。从适宜人群、减重目标、生活方式干预、药物减重、手术减重、中西医联合治疗、监测及随访、妊娠管理、体重包容性护理9个方面汇总了29条证据。结论医护人员在进行证据转化时,应结合国内实际情况,并充分考虑患者的个性化特征及偏好,以促进患者科学减重。 展开更多
关键词 超重 肥胖 多囊卵巢综合征 体重管理 证据总结
暂未订购
超重或肥胖2型糖尿病病人非药物体重管理的最佳证据总结
17
作者 吕婷 王晓云 +5 位作者 李旭霞 张苗苗 寇婷媛 李丽霞 郑彭燕 刘三娇 《护理研究》 北大核心 2026年第1期108-114,共7页
目的:检索并总结超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。方法:检索BMJ Best Practice、UpToDate、JBI循证卫生保健研究中心网站、英国国家临床优化研究所(NICE)官网、国际指南协作网(GIN)、美国医疗保健研究与质量局网站(AH... 目的:检索并总结超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。方法:检索BMJ Best Practice、UpToDate、JBI循证卫生保健研究中心网站、英国国家临床优化研究所(NICE)官网、国际指南协作网(GIN)、美国医疗保健研究与质量局网站(AHRQ)、世界卫生组织(WHO)指南网、加拿大安大略注册护士协会(RANO)、国际糖尿病联合会网站(IDF)、美国糖尿病协会(ADA)官网、医脉通、Cochrane Library、EMbase、CINAHL、Scopus、PubMed、中华医学会期刊全文数据库、万方数据知识服务平台、中国知网、中国生物医学文献数据库、维普数据库等网站,检索时间为建库至2025年2月5日。2名研究者通过文献质量评价,提炼并总结形成超重或肥胖2型糖尿病病人非药物体重管理的最佳证据。结果:共纳入20篇文献,包括1篇临床实践、1篇临床决策、5篇指南、5篇专家共识、8篇系统评价;最终从体重管理获益、体重管理目标、评估与监测及生活方式干预4个方面汇总了23条最佳证据。结论:总结形成的超重或肥胖2型糖尿病病人非药物体重管理的最佳证据具有科学性和实用性,可为医务人员管理超重或肥胖2型糖尿病病人体重提供参考。 展开更多
关键词 2型糖尿病 超重 肥胖 非药物 体重管理 证据总结 循证护理
暂未订购
成人脓毒症病人集束化措施管理的最佳证据总结
18
作者 谢瑞怡 夏新 +1 位作者 范红霞 汪媛媛 《循证护理》 2026年第1期50-56,共7页
目的:检索、评价和总结成人脓毒症病人集束化措施管理的相关证据,为临床护理提供参考。方法:计算机系统检索国内外指南网、数据库、学会等有关脓毒症病人集束化措施管理的临床指南、最佳实践、专家共识、系统评价、证据总结,检索时间为... 目的:检索、评价和总结成人脓毒症病人集束化措施管理的相关证据,为临床护理提供参考。方法:计算机系统检索国内外指南网、数据库、学会等有关脓毒症病人集束化措施管理的临床指南、最佳实践、专家共识、系统评价、证据总结,检索时间为建库至2024年12月20日,由2名经过系统培训的研究人员按照JBI循证卫生保健中心的相应评价标准进行文献质量评价,对符合质量标准的文献进行证据提取。结果:共纳入13篇文献,其中指南5篇,专家共识5篇,系统评价3篇。最终形成早期筛查与识别、采集标本、使用广谱抗生素、液体复苏、使用血管活性药物、支持治疗、病情观察7个方面,共37条最佳证据。结论:总结的成人脓毒症病人集束化措施管理的最佳证据可为临床医护人员实施成人脓毒症病人集束化措施的整体流程提供借鉴和参考依据。 展开更多
关键词 脓毒症 集束化措施 证据总结 循证护理
暂未订购
海洋科学期刊论文中简明语言概要与摘要的词汇复杂度对比研究
19
作者 刘颖颖 吕名婕 王智红 《中国海洋大学学报(社会科学版)》 2026年第1期137-150,共14页
简明语言概要是一种新兴的重要学术体裁。近年来,多个领域的权威国际学术期刊要求作者提交简明语言概要。部分期刊在发表的论文中,将概要与摘要紧邻呈现,构成论文题目之后的第一部分内容。概要和摘要都是对同一学术研究的简要介绍,在内... 简明语言概要是一种新兴的重要学术体裁。近年来,多个领域的权威国际学术期刊要求作者提交简明语言概要。部分期刊在发表的论文中,将概要与摘要紧邻呈现,构成论文题目之后的第一部分内容。概要和摘要都是对同一学术研究的简要介绍,在内容上具有高度可比性。然而,两者的目标读者群体不同,摘要面向专家和学者,而概要面向非专业大众读者。不同于对摘要的写作要求,国际期刊的投稿指南要求概要中应避免使用专业术语。然而,在更广泛的词汇复杂度层面上,摘要和概要之间是否存在差异,以及存在何种显著差异,尚待实证探究。本研究以海洋科学国际学术期刊论文为例,对比分析200篇论文的摘要与概要在多种词汇复杂度指标上的差异。研究发现,两者在词汇密度、词汇复杂性、词汇多样性等维度的21个指标上均存在显著差异,可为海洋科学领域概要的写作教学和学习提供依据和参考,并有助于相关领域的专家学者、学术写作教师和学生理解概要这一新兴体裁的语言特征。 展开更多
关键词 词汇复杂度 海洋科学 概要 学术论文摘要
在线阅读 下载PDF
肿瘤病人肠外营养血糖管理最佳证据总结
20
作者 陈琳 邵雅双 +3 位作者 汤露 苏倩 吴白女 叶富英 《循证护理》 2026年第1期36-42,共7页
目的:检索、评价和汇总肿瘤病人肠外营养血糖管理的最佳证据,为临床护理实践提供参考依据。方法:按照“6S”模型检索相关文献,包括指南、专家共识、临床决策、系统评价及Meta分析等,检索时限为建库至2024年12月31日。由2名研究者对纳入... 目的:检索、评价和汇总肿瘤病人肠外营养血糖管理的最佳证据,为临床护理实践提供参考依据。方法:按照“6S”模型检索相关文献,包括指南、专家共识、临床决策、系统评价及Meta分析等,检索时限为建库至2024年12月31日。由2名研究者对纳入的文献进行质量评价,并对证据进行提取、整合。结果:共纳入10篇文献,其中1篇临床决策、5篇指南、1篇专家共识、2篇证据总结、1篇系统评价,最终从建立团队、危险因素识别、血糖控制目标、肠外营养液配制、肠外营养液输注、胰岛素用量和添加方式、血糖监测、低血糖预防和处理8个方面总结26条证据。结论:总结的肿瘤病人肠外营养血糖管理的最佳证据较为科学、全面,建议医护人员在应用证据时充分考虑临床实际情况,结合病人病情和护患比,优化肿瘤病人肠外营养血糖管理措施。 展开更多
关键词 肿瘤 肠外营养 血糖管理 证据总结 循证护理
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部