An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so deta...An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model.Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement.The ion flow field of a ±500 kV HVDC project with bipolar lines on the same tower is simulated.The total electrical field and ion current density on ground level are compared among different line arrangements.展开更多
This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and t...This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation. The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining ca- tenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique. Examples of different TLs configurations, including a 220 kV single-circuit hori- zontally configured TLs, a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs, are illustrated to verify the validity of this methodology. A more complicatal configurations, including a 500 kV double-circuit TLs and two 220 kV single-circuit horizontally configured TLs, are also calculated. Conclusions were drawn from the simulation: 1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span. 2) Coordinate trans- formation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations, which makes it possible to deal with complex engineering problems. 3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value. 4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs, for instance, the height of TLs, the length of span and the intersection angle of multiple circuits, influence the strength and the distribution of hybrid electric field. The influence regularities sum- marized in this paper can be referred by future TL designs to meet the electromagnetic environmental protection regulations.展开更多
由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运...由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运放、逻辑门等器件以及忆阻器构成,主要分为信号叠加模块和神经元信号产生模块。通过施加多个双尖峰脉冲信号并调节输入信号的数量和频率,模拟了生物神经元受到的不同程度刺激。研究发现施加到神经元上信号的数量和频率达到一定的值,神经元电路才会输出电压信号,这与生物体中只有受到一定程度的刺激时才会做出反应的现象是一致的。进一步,调节该电路中神经元信号产生模块的阈值电压大小,研究发现输入相同的信号,只有当电路的阈值电压较低时,神经元电路才能输出电压信号,这与生物中不同部位受到相同的刺激,神经元兴奋程度越高,越容易做出反应的现象一致。由此,该文所提出的LIF神经元电路不仅解决了传统电路输入信号单一、输入信号波形与生物信号波形差异大等问题,而且能模拟生物神经元的兴奋程度,这为人工神经网络的设计提供理论依据。展开更多
中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结...中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结合了多通道的二维递归融合图和轻量化多尺度残差(lightweightmultiscale convolutional residuals,LMCR)网络。首先,通过仿真获取三相电流信号作为故障信号;再利用递归图(recurrence plot,RP)将三相电流信号分别转化为二维图并进行多通道融合,以捕捉时间序列中的周期性、突变点和趋势等特征;最后,将递归融合图作为输入,输入到LMCR模型中进行故障识别,LMCR模型整合多级Inception结构和残差网络,用于提取不同尺度的特征并融合这些特征,从而保证网络的梯度消失和爆炸。实验结果显示,该方法在IGBT故障识别中表现出色,无噪声环境下平均识别准确率达100%,噪声环境中也达到了92.53%,充分证明了该方法具有较强的特征提取能力和优异的抗噪性能。展开更多
基金Project Supported by China11th Five-year National Key Technologies R&D Program(2006BAA02A20)
文摘An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model.Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement.The ion flow field of a ±500 kV HVDC project with bipolar lines on the same tower is simulated.The total electrical field and ion current density on ground level are compared among different line arrangements.
基金Project supported by Scientific Research Foundation of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (2007DA1051271 2204), Natural Science Foundation of Chongqing Municipality (cstc201 ljjA20009).
文摘This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation. The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining ca- tenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique. Examples of different TLs configurations, including a 220 kV single-circuit hori- zontally configured TLs, a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs, are illustrated to verify the validity of this methodology. A more complicatal configurations, including a 500 kV double-circuit TLs and two 220 kV single-circuit horizontally configured TLs, are also calculated. Conclusions were drawn from the simulation: 1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span. 2) Coordinate trans- formation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations, which makes it possible to deal with complex engineering problems. 3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value. 4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs, for instance, the height of TLs, the length of span and the intersection angle of multiple circuits, influence the strength and the distribution of hybrid electric field. The influence regularities sum- marized in this paper can be referred by future TL designs to meet the electromagnetic environmental protection regulations.
文摘由于传统的互补金属-氧化物-半导体(Complementary Metal Oxide Semiconductor,CMOS)神经元电路与生物学的契合性较差且电路复杂,提出了一种基于忆阻器的多端口输入的泄露-整合-激发(Leaky-Integrate-Fire,LIF)神经元电路。该电路由运放、逻辑门等器件以及忆阻器构成,主要分为信号叠加模块和神经元信号产生模块。通过施加多个双尖峰脉冲信号并调节输入信号的数量和频率,模拟了生物神经元受到的不同程度刺激。研究发现施加到神经元上信号的数量和频率达到一定的值,神经元电路才会输出电压信号,这与生物体中只有受到一定程度的刺激时才会做出反应的现象是一致的。进一步,调节该电路中神经元信号产生模块的阈值电压大小,研究发现输入相同的信号,只有当电路的阈值电压较低时,神经元电路才能输出电压信号,这与生物中不同部位受到相同的刺激,神经元兴奋程度越高,越容易做出反应的现象一致。由此,该文所提出的LIF神经元电路不仅解决了传统电路输入信号单一、输入信号波形与生物信号波形差异大等问题,而且能模拟生物神经元的兴奋程度,这为人工神经网络的设计提供理论依据。