Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for ...Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.展开更多
PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterpri...PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.展开更多
Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem o...Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
In this paper, we consider a consensus tracking problem of a class of networked multi-agent systems(MASs)in non-affine pure-feedback form under a directed topology. A distributed adaptive tracking consensus control sc...In this paper, we consider a consensus tracking problem of a class of networked multi-agent systems(MASs)in non-affine pure-feedback form under a directed topology. A distributed adaptive tracking consensus control scheme is constructed recursively by the backstepping method, graph theory,neural networks(NNs) and the dynamic surface control(DSC)approach. The key advantage of the proposed control strategy is that, by the DSC technique, it avoids "explosion of complexity"problem along with the increase of the degree of individual agents and thus the computational burden of the scheme can be drastically reduced. Moreover, there is no requirement for prior knowledge about system parameters of individual agents and uncertain dynamics by employing NNs approximation technology.We then further show that, in theory, the designed control policy guarantees the consensus errors to be cooperatively semi-globally uniformly ultimately bounded(CSUUB). Finally, two examples are presented to validate the effectiveness of the proposed control strategy.展开更多
In this paper, we focus on circle formation control of multi-agent systems (MAS) with a leader. The circle formation is achieved based on the lead-following and the artificial potential field method. A distributed c...In this paper, we focus on circle formation control of multi-agent systems (MAS) with a leader. The circle formation is achieved based on the lead-following and the artificial potential field method. A distributed control law is given to make a group of agents form a circle and consequently achieve an expected angle. Finally, simulation results show that the proposed circle formation strategies are effective.展开更多
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金supported in part by the National Natural Science Foundation of China(62276119)the Natural Science Foundation of Jiangsu Province(BK20241764)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2860)
文摘Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.
文摘PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), Key Project of Natural Science Fouudation of China (60934003), National Natural Science Foundation of China (61074065, 60974018), Natural Science Foundation of Hebei Province(F2012203119), and the Science Foundation of Yanshan University for the Excellent Ph. D. Students (201204) The authors thank Chen Cai-Lian of the Shanghai Jiao Tong University for her comments on English polishing and problem formulation.
基金supported by National Natural Science Foundation of China(Nos.61104092,61134007 and 61203147)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Consensus problem is investigated for heterogeneous multi-agent systems composed of first-order agents and second-order agents in this paper. Leader-following consensus protocol is adopted to solve consensus problem of heterogeneous multi-agent systems with time-varying communication and input delays. By constructing Lyapunov-Krasovkii functional, sufficient consensus conditions in linear matrix inequality(LMI) form are obtained for the system under fixed interconnection topology. Moreover, consensus conditions are also obtained for the heterogeneous systems under switching topologies with time delays. Simulation examples are given to illustrate effectiveness of the results.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金supported in part by the National Natural Science Foundation of Chin(61503194,61533010,61374055)the Ph.D.Programs Foundation of Ministry of Education of China(20110142110036)+6 种基金the Natural Science Foundation o Jiangsu Province(BK20131381,BK20140877)China Postdoctoral Scienc Foundation(2015M571788)Jiangsu Planned Projects for Postdoctoral Re search Funds(1402066B)the Foundation of the Key Laboratory of Marin Dynamic Simulation and Control for the Ministry of Transport(DMU)(DMU MSCKLT2016005)Jiangsu Government Scholarship for Overseas Studie(2017-037)the Key University Natural Science Research Project of Jiangsu Province(17KJA120003)the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(NY214076)
文摘In this paper, we consider a consensus tracking problem of a class of networked multi-agent systems(MASs)in non-affine pure-feedback form under a directed topology. A distributed adaptive tracking consensus control scheme is constructed recursively by the backstepping method, graph theory,neural networks(NNs) and the dynamic surface control(DSC)approach. The key advantage of the proposed control strategy is that, by the DSC technique, it avoids "explosion of complexity"problem along with the increase of the degree of individual agents and thus the computational burden of the scheme can be drastically reduced. Moreover, there is no requirement for prior knowledge about system parameters of individual agents and uncertain dynamics by employing NNs approximation technology.We then further show that, in theory, the designed control policy guarantees the consensus errors to be cooperatively semi-globally uniformly ultimately bounded(CSUUB). Finally, two examples are presented to validate the effectiveness of the proposed control strategy.
基金Supported by National Natural Science Foundation of China (61079001, 61273006), National High Technology Research and Development Program of China (863 Program) (2011AA110301), and Specialized Research Fund for the Doctoral Program of Higher Education of China (20111103110017)
基金supported by the National Natural Science Foundation of China(No.61233002)the Fundamental Research Funds for the Central Universities(No.N120404019)
文摘In this paper, we focus on circle formation control of multi-agent systems (MAS) with a leader. The circle formation is achieved based on the lead-following and the artificial potential field method. A distributed control law is given to make a group of agents form a circle and consequently achieve an expected angle. Finally, simulation results show that the proposed circle formation strategies are effective.