Estimating long-term creep deformation and life of materials is an effective way to ensure the service safety and to reduce the cost of long-term integrity evaluation of high temperature structural materials.Since the...Estimating long-term creep deformation and life of materials is an effective way to ensure the service safety and to reduce the cost of long-term integrity evaluation of high temperature structural materials.Since the 1980 s, the θ projection model has been widely used for predicting creep lives due to its ability to capture the characteristic transitions observed in creep curves obtained under constant true stress conditions. However, the creep rupture behavior under constant load or engineering stress conditions cannot be simulated accurately using this model because of the different stress states. In this paper, creep curves obtained under constant load conditions were analyzed using a modified θ projection model by considering the increase in true stress with creep deformation during the creep tests. This model is expressed as ε = θ_1(1-e^(-θ_2t)) + θ3 e^(θ_4e^θ5^εt)-1, and was validated using the creep curves of K465 and DZ125 superalloys tested at a range of temperatures and engineering stresses. Moreover, it was shown that the predictive capability of the modified θ projection model was significantly improved over the original one, as it reduces the prediction uncertainty from a range of 10% to 20% to below 5%. Meanwhile,it was shown that the model can be reasonably used for predicting constant stress creep conditions, when appropriate parameters are used. The prediction performance of the modified model will be discussed in another paper. The results of this study show great potential for the evaluation and assessment of the service safety of structural materials used in applications where designs are limited by creep deformation.展开更多
A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ...A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.展开更多
In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
To minimize the deviation of the predicted creep curves obtained under constant load conditions by the original θ projection model, a new modified version that can be expressed by ε = θ_1(1-e^(-θ2t)) +θ3 (e^(θ_...To minimize the deviation of the predicted creep curves obtained under constant load conditions by the original θ projection model, a new modified version that can be expressed by ε = θ_1(1-e^(-θ2t)) +θ3 (e^(θ_4e^θ5^εt)-1), was derived and experimentally validated in our last study. In the present study, the predictive capability of the modified θ projection model was investigated by comparing the simulated and experimentally determined creep curves of K465 and DZ125 superalloys over a range of temperatures and stresses. Furthermore, the linear relationship between creep temperature and initial stress was extended to the 5-parameter model. The results indicated that the modified model could be used as a creep life prediction method, as it described the creep curve shape and resulted in predictions that fall within a specified error interval. Meanwhile, this modified model provides a more accurate way of describing creep curves under constant load conditions. The limitations and future direction of the modified model were also discussed. In addition, this modified θ projection model shows great potential for the evaluation and assessment of the service safety of structural materials used in components governed by creep deformation.展开更多
A simple model for estimating the rate constant between CO_(2)-CO gas and molten slag containing iron oxides was developed using optical basicity only.In this model,the temperature dependence of the rate constant can ...A simple model for estimating the rate constant between CO_(2)-CO gas and molten slag containing iron oxides was developed using optical basicity only.In this model,the temperature dependence of the rate constant can be described by the Arrhenius law,and the activation energy can be expressed with a linear function of the slag's optical basicity.The model was applied to some molten slag systems,such as FeO,FeO-CaO,FeO-SiO_(2),FeO-Na_(2)O,FeO-CaO-SiO_(2),FeO-SiO_(2)-P_(2)O_(5),FeO-SiOE-Na_(2)O,and FeO-CaO-SiO_(2)-P_(2)O_(5).A comparison between the predicted results and measured data showed that the model worked well.展开更多
The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperat...The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.展开更多
This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to ext...In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.展开更多
Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant re...Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant required return and constant return on equity.The equation of EVA valuation model has taken its shape under the assumption of constant required return and constant return on equity.However,a large body of empirical evidence indicates that required rate of return never remain constant.The EVA-valuation model formulated under constant required return cannot be implemented under the scenario of changing required return.In this study,we explored whether the EVA valuation model could be implemented under changing required return by making any changes in the model and found that it could be implemented under the scenario of changing required return by replacing the book value of the equity of the existing model with the present value of required earnings or normal market earnings.We further examined whether the explanatory ability of the EVA valuation model under the assumption of changing required return is better than that of the valuation model under the assumption of constant required return.Relative information content analyses were conducted by considering sample of the intrinsic value of equities determined by valuation models and the market value of equities of 69 large-cap,88 mid-cap,and 79 small-cap companies.The results showed that the EVA-based valuation model with changing normal market return outperformed the EVA-based valuation model with constant required return.展开更多
Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = ...Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.展开更多
In this paper, we focus on a constant elasticity of variance (CEV) modeland want to find its optimal strategies for a mean-variance problem under two constrainedcontrols: reinsurance/new business and investment (n...In this paper, we focus on a constant elasticity of variance (CEV) modeland want to find its optimal strategies for a mean-variance problem under two constrainedcontrols: reinsurance/new business and investment (no-shorting). First, aLagrange multiplier is introduced to simplify the mean-variance problem and thecorresponding Hamilton-Jacobi-Bellman (HJB) equation is established. Via a powertransformation technique and variable change method, the optimal strategies withthe Lagrange multiplier are obtained. Final, based on the Lagrange duality theorem,the optimal strategies and optimal value for the original problem (i.e., the efficientstrategies and efficient frontier) are derived explicitly.展开更多
An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust...An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.展开更多
We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iterati...We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.展开更多
The CODATA procedure for calculating the recommended relative uncertainty of the measured fundamental physical constants is complex and is based on the use of powerful computers and modern mathematical statistical met...The CODATA procedure for calculating the recommended relative uncertainty of the measured fundamental physical constants is complex and is based on the use of powerful computers and modern mathematical statistical methods. In addition, the expert’s opinion caused by accumulated knowledge, life experience and intuition of researchers is applied at each stage of the calculations. In this article, the author continues to advocate a theoretically grounded information method as the most effective tool for testing and achieving the minimum possible relative uncertainty for any measurements of experimental physics and engineering. The introduced fundamental limit characterizing discrepancy between a model and the observed object cannot be overcome by any improvement of instruments, methods of measurement and the model’s computerization. Examples are given.展开更多
q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hype...q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.展开更多
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotati...Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.展开更多
Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded ...Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.展开更多
基金the National Key Research and Development Program of China(Grant No.2017YFB0702902)the National Natural Science Foundation of China(Grant Nos.51631008and 51771019)+1 种基金the National High Technology Research Program of China(Grant No.2012AA03A513)the 111 Project(No.B170003)
文摘Estimating long-term creep deformation and life of materials is an effective way to ensure the service safety and to reduce the cost of long-term integrity evaluation of high temperature structural materials.Since the 1980 s, the θ projection model has been widely used for predicting creep lives due to its ability to capture the characteristic transitions observed in creep curves obtained under constant true stress conditions. However, the creep rupture behavior under constant load or engineering stress conditions cannot be simulated accurately using this model because of the different stress states. In this paper, creep curves obtained under constant load conditions were analyzed using a modified θ projection model by considering the increase in true stress with creep deformation during the creep tests. This model is expressed as ε = θ_1(1-e^(-θ_2t)) + θ3 e^(θ_4e^θ5^εt)-1, and was validated using the creep curves of K465 and DZ125 superalloys tested at a range of temperatures and engineering stresses. Moreover, it was shown that the predictive capability of the modified θ projection model was significantly improved over the original one, as it reduces the prediction uncertainty from a range of 10% to 20% to below 5%. Meanwhile,it was shown that the model can be reasonably used for predicting constant stress creep conditions, when appropriate parameters are used. The prediction performance of the modified model will be discussed in another paper. The results of this study show great potential for the evaluation and assessment of the service safety of structural materials used in applications where designs are limited by creep deformation.
基金Projected supported by the National Natural Science Foundation of China(Nos.11502123 and11262012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2015JQ01)
文摘A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.
基金support provided by the National Key Research and Development Program of China (Grant No.2017YFB0702902)the National Natural Science Foundation of China (Grant Nos.51631008 and 51771019)the National High Technology Research Program of China (Grant No.2012AA03A513) as well as the 111 Project (No.B170003)
文摘To minimize the deviation of the predicted creep curves obtained under constant load conditions by the original θ projection model, a new modified version that can be expressed by ε = θ_1(1-e^(-θ2t)) +θ3 (e^(θ_4e^θ5^εt)-1), was derived and experimentally validated in our last study. In the present study, the predictive capability of the modified θ projection model was investigated by comparing the simulated and experimentally determined creep curves of K465 and DZ125 superalloys over a range of temperatures and stresses. Furthermore, the linear relationship between creep temperature and initial stress was extended to the 5-parameter model. The results indicated that the modified model could be used as a creep life prediction method, as it described the creep curve shape and resulted in predictions that fall within a specified error interval. Meanwhile, this modified model provides a more accurate way of describing creep curves under constant load conditions. The limitations and future direction of the modified model were also discussed. In addition, this modified θ projection model shows great potential for the evaluation and assessment of the service safety of structural materials used in components governed by creep deformation.
基金supported by the National Natural Science Foundation of China(Nos.50834007,50874128,and 50674012)
文摘A simple model for estimating the rate constant between CO_(2)-CO gas and molten slag containing iron oxides was developed using optical basicity only.In this model,the temperature dependence of the rate constant can be described by the Arrhenius law,and the activation energy can be expressed with a linear function of the slag's optical basicity.The model was applied to some molten slag systems,such as FeO,FeO-CaO,FeO-SiO_(2),FeO-Na_(2)O,FeO-CaO-SiO_(2),FeO-SiO_(2)-P_(2)O_(5),FeO-SiOE-Na_(2)O,and FeO-CaO-SiO_(2)-P_(2)O_(5).A comparison between the predicted results and measured data showed that the model worked well.
基金中国科学院资助项目,Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education of China
文摘The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.
基金financial support provided by Islamic Azad University of Mahshahr Branch,Iran
文摘In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.
文摘Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant required return and constant return on equity.The equation of EVA valuation model has taken its shape under the assumption of constant required return and constant return on equity.However,a large body of empirical evidence indicates that required rate of return never remain constant.The EVA-valuation model formulated under constant required return cannot be implemented under the scenario of changing required return.In this study,we explored whether the EVA valuation model could be implemented under changing required return by making any changes in the model and found that it could be implemented under the scenario of changing required return by replacing the book value of the equity of the existing model with the present value of required earnings or normal market earnings.We further examined whether the explanatory ability of the EVA valuation model under the assumption of changing required return is better than that of the valuation model under the assumption of constant required return.Relative information content analyses were conducted by considering sample of the intrinsic value of equities determined by valuation models and the market value of equities of 69 large-cap,88 mid-cap,and 79 small-cap companies.The results showed that the EVA-based valuation model with changing normal market return outperformed the EVA-based valuation model with constant required return.
文摘Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.
基金The NSF(11201111) of ChinaHebei Province Colleges and Universities Science,and Technology Research Project(ZD20131017)
文摘In this paper, we focus on a constant elasticity of variance (CEV) modeland want to find its optimal strategies for a mean-variance problem under two constrainedcontrols: reinsurance/new business and investment (no-shorting). First, aLagrange multiplier is introduced to simplify the mean-variance problem and thecorresponding Hamilton-Jacobi-Bellman (HJB) equation is established. Via a powertransformation technique and variable change method, the optimal strategies withthe Lagrange multiplier are obtained. Final, based on the Lagrange duality theorem,the optimal strategies and optimal value for the original problem (i.e., the efficientstrategies and efficient frontier) are derived explicitly.
基金supported by the National Natural Science Foundation of China(No.11472167)
文摘An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.
文摘We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.
文摘The CODATA procedure for calculating the recommended relative uncertainty of the measured fundamental physical constants is complex and is based on the use of powerful computers and modern mathematical statistical methods. In addition, the expert’s opinion caused by accumulated knowledge, life experience and intuition of researchers is applied at each stage of the calculations. In this article, the author continues to advocate a theoretically grounded information method as the most effective tool for testing and achieving the minimum possible relative uncertainty for any measurements of experimental physics and engineering. The introduced fundamental limit characterizing discrepancy between a model and the observed object cannot be overcome by any improvement of instruments, methods of measurement and the model’s computerization. Examples are given.
文摘q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.
基金Supported by National Natural Science Committee and Chinese Engineering Physics Institute Foundation(10576013)Natural Science Foundation of Henan Province(0611053200)Natural Science Study Foundation of Henan University(06YBZR028)
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
文摘Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.
文摘Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.