期刊文献+
共找到94,099篇文章
< 1 2 250 >
每页显示 20 50 100
Fingerprint-enhanced hierarchical molecular graph neural networks for property prediction 被引量:1
1
作者 Shuo Liu Mengyun Chen +1 位作者 Xiaojun Yao Huanxiang Liu 《Journal of Pharmaceutical Analysis》 2025年第6期1311-1320,共10页
Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based me... Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based methods have shown promising results in molecular property prediction.However,traditional methods rely on expert knowledge and often fail to capture the complex structures and interactions within molecules.Similarly,graph-based methods typically overlook the chemical structure and function hidden in molecular motifs and struggle to effectively integrate global and local molecular information.To address these limitations,we propose a novel fingerprint-enhanced hierarchical graph neural network(FH-GNN)for molecular property prediction that simultaneously learns information from hierarchical molecular graphs and fingerprints.The FH-GNN captures diverse hierarchical chemical information by applying directed message-passing neural networks(D-MPNN)on a hierarchical molecular graph that integrates atomic-level,motif-level,and graph-level information along with their relationships.Addi-tionally,we used an adaptive attention mechanism to balance the importance of hierarchical graphs and fingerprint features,creating a comprehensive molecular embedding that integrated hierarchical mo-lecular structures with domain knowledge.Experiments on eight benchmark datasets from MoleculeNet showed that FH-GNN outperformed the baseline models in both classification and regression tasks for molecular property prediction,validating its capability to comprehensively capture molecular informa-tion.By integrating molecular structure and chemical knowledge,FH-GNN provides a powerful tool for the accurate prediction of molecular properties and aids in the discovery of potential drug candidates. 展开更多
关键词 Deep learning Hierarchical molecular graph molecular fingerprint molecular property prediction Directed message-passing neural network
在线阅读 下载PDF
Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition
2
作者 Xixian Sun Shengke Li +1 位作者 Ruibing Wang Leyong Wang 《Chinese Chemical Letters》 2025年第4期1-2,共2页
Molecular recognition of bioreceptors and enzymes relies on orthogonal interactions with small molecules within their cavity. To date, Chinese scientists have developed three types of strategies for introducing active... Molecular recognition of bioreceptors and enzymes relies on orthogonal interactions with small molecules within their cavity. To date, Chinese scientists have developed three types of strategies for introducing active sites inside the cavity of macrocyclic arenes to better mimic molecular recognition of bioreceptors and enzymes.The editorial aims to enlighten scientists in this field when they develop novel macrocycles for molecular recognition, supramolecular assembly, and applications. 展开更多
关键词 supramolecular assembly orthogonal interactions introducing active sites active binding sites macrocyclic arenes molecular recognition orthogonal interactions small molecules biomimetic molecular recognition
原文传递
Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory 被引量:1
3
作者 Yiwen Wang Tong Wu +5 位作者 Xingyu Li Qilan Xu Heshui Yu Shixin Cen Yi Wang Zheng Li 《Chinese Journal of Natural Medicines》 2025年第11期1409-1424,共16页
Due to its synergistic effects and reduced side effects,combination therapy has become an important strategy for treating complex diseases.In traditional Chinese medicine(TCM),the“monarch,minister,assistant,envoy”co... Due to its synergistic effects and reduced side effects,combination therapy has become an important strategy for treating complex diseases.In traditional Chinese medicine(TCM),the“monarch,minister,assistant,envoy”compatibilities theory provides a systematic framework for drug compatibility and has guided the formation of a large number of classic formulas.However,due to the complex compositions and diverse mechanisms of action of TCM,it is difficult to comprehensively reveal its potential synergistic patterns using traditional methods.Synergistic prediction based on molecular compatibility theory provides new ideas for identifying combinations of active compounds in TCM.Compared to resource-intensive traditional experimental methods,artificial intelligence possesses the ability to mine synergistic patterns from multi-omics and structural data,providing an efficient means for modeling and optimizing TCM combinations.This paper systematically reviews the application progress of AI in the synergistic prediction of TCM active compounds and explores the challenges and prospects of its application in modeling combination relationships,thereby contributing to the modernization of TCM theory and methodological innovation. 展开更多
关键词 molecular compatibility theory Synergy prediction of TCM compounds molecular drugs combination prediction Artificial intelligence
原文传递
Molecular docking and molecular dynamics studies of major phytoconstituents of Nilavembu Kudineer against COVID-19 protein targets
4
作者 Sampathkumar Ranganathan Marie Victoria Rani Auroquiaraj +2 位作者 Ramya Chandra Charles Mariasoosai Chitra Balasubramanian Chandramohan Batrachalam 《Infectious Diseases Research》 2025年第2期46-59,共14页
Background:In this present study,we have screened major phytoconstituents of Nilavembu Kudineer against critical COVID-19 target proteins that cause severe pneumonia globally.In addition,a human receptor protein that ... Background:In this present study,we have screened major phytoconstituents of Nilavembu Kudineer against critical COVID-19 target proteins that cause severe pneumonia globally.In addition,a human receptor protein that facilitates viral entry into the host cell was also targeted.Methods:Phytoconstituents derived from Nilavembu Kudineer formulation were docked against 12 major proteins,which help viral entry,viral proliferation,and a human receptor facilitate the viral entry into the host cells.The major metabolites of Nilavembu Kudineer were retrieved based on literature from the PubChem database.The docked complex was subjected to MD simulation studies to verify its binding mode and the stability of the interactions.The binding energy analysis was performed to estimate the binding affinity between the compounds and their respective receptors using MM/GBSA.Results:Docking studies have shown that three major plants in the polyherbal formulation,Andrographis paniculata,Mollugo cerviana,and Zingiber officinale,have 14 potential compounds that have better binding affinity against COVID-19 proteins and their host receptor protein.MD studies and binding energy calculations also confirmed that these compounds possess better stability and strong binding energy with these proteins.Conclusion:In silico analyses suggest that phytoconstituents from Nilavembu Kudineer possess promising multi-target antiviral activity against COVID-19.These findings provide a rationale for further experimental studies to validate their therapeutic potential for the treatment of COVID-19. 展开更多
关键词 COVID-19 PNEUMONIA Nilavembu Kudineer phyto-constituents molecular docking molecular dynamics DRUGS
暂未订购
Mapping key trends,relationships,and molecular pathways for neuroprotection in glaucoma:a bibliometric approach
5
作者 Puneet Agarwal Renu Agarwal Igor Iezhitsa 《International Journal of Ophthalmology(English edition)》 2025年第6期1131-1145,共15页
Glaucoma,a degenerative optic neuropathy,causes retinal ganglion cell(RGC)apoptosis and irreversible vision loss.Current therapies often fail to stop disease progression despite lowering intraocular pressure,the main ... Glaucoma,a degenerative optic neuropathy,causes retinal ganglion cell(RGC)apoptosis and irreversible vision loss.Current therapies often fail to stop disease progression despite lowering intraocular pressure,the main risk factor.Thus,neuroprotective strategies have gained interest.We performed a bibliometric analysis to determine global publishing trends and relationships among prolific authors,publications,institutions,funding agencies,and journals.We also analyzed author keywords to identify research hotspots in glaucoma neuroprotection.Further,based on keyword analysis,we reviewed most recent literature to understand mechanistic pathways underlying glaucomarelated pathophysiological responses leading to RGC loss.Bibliographic data were sourced from Scopus.Basic bibliographic features were characterized using Scopus’s functions.VOSviewer was used for mapping and visualizing bibliometric networks.The analysis included trends in publications since 2000,the most prolific countries,institutions,authors,and the strength of their linkages.A significant increase in publication output over the past two decades was noted.The United States leads in funding support,research output,and citation links,followed by China and the UK.Among the top 10 most cited authors,three are from Japanese institutions.Keyword analysis shows a focus on molecular targets related to ischemia,excitotoxicity,inflammation,and oxidative stress,with fewer emerging drug candidates and limited clinical trials.Based on the most recent literature,emerging molecular targets underlying these key pathophysiological mechanisms are summarized.In conclusion,while pathophysiology and molecular mechanisms are the current focus,there is not much progress in developing new drug candidates and conducting clinical trials. 展开更多
关键词 GLAUCOMA NEUROPROTECTION bibliometric analysis publishing trends molecular pathways molecular targets
原文传递
Molecular docking reveals the pyroptosis-regulating mechanism of Dingxin Recipe in atherosclerosis
6
作者 Hao-Yue Jia Hao Zhang +4 位作者 Cheng-Yan Guan Qi-Wen Lu Sang Luo Yi-Rong Ma Qiang Wan 《Life Research》 2025年第4期80-90,共11页
Background:Atherosclerosis(AS),the primary pathological foundation of cardiovascular diseases,is characterized by intricate processes including inflammation,lipid metabolism disorders,and pyroptosis.While the traditio... Background:Atherosclerosis(AS),the primary pathological foundation of cardiovascular diseases,is characterized by intricate processes including inflammation,lipid metabolism disorders,and pyroptosis.While the traditional Chinese medicine compound Dingxin Recipe(DXR)has demonstrated definitive clinical efficacy in treating AS,its therapeutic mechanisms remain unclear.This study employed an integrated approach combining network pharmacology,molecular docking,and molecular dynamics simulations(MDS)to investigate DXR’s anti-AS mechanisms.Methods:Active ingredients and targets of DXR were identified and screened using databases such as GeneCards,OMIM,and TCMSP.An“ingredient-target-disease”network was constructed to visualize these interactions.Molecular docking was utilized to assess the binding affinity between key ingredients and their respective targets.Additionally,MDS were conducted to analyze the stability of these complexes,providing robust evidence for further clinical applications and in-depth research.Results:Through network pharmacology analysis,we identified 99 active drug components,934 gene targets,and 1463 disease targets associated with DXR.Protein-protein interaction analysis revealed central regulatory nodes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these components primarily modulate processes such as inflammatory response and transcription factor activation,and are closely linked to the AGERAGE signaling pathway,lipid metabolism,and atherosclerosis pathways.Molecular docking confirmed strong binding potential between the components and their targets,while MDS further validated the stability of these interactions.Conclusion:This study elucidates that the active ingredients in DXR alleviate AS by mitigating inflammatory responses and inhibiting pyroptosis through the suppression of inflammatory factor release.These findings provide a scientific foundation for the clinical application of DXR in AS treatment. 展开更多
关键词 ATHEROSCLEROSIS PYROPTOSIS network pharmacology molecular docking molecular dynamics simulations
暂未订购
Investigating the potential of Euphorbia helioscopia intervention in gastric cancer with positive lymph node metastasis:insights from molecular dynamics simulation
7
作者 Yijun Zheng Zheyuan Wang +5 位作者 Mancai Wang Qi Xiao Hongyang Deng Jipin Li Lingyi Zhang Youcheng Zhang 《Journal of Chinese Pharmaceutical Sciences》 2025年第7期644-663,共20页
Euphorbia helioscopia,a natural plant recognized for its anti-tumor properties,has been extensively investigated in various cancers.However,its therapeutic potential in gastric cancer with positive lymph node metastas... Euphorbia helioscopia,a natural plant recognized for its anti-tumor properties,has been extensively investigated in various cancers.However,its therapeutic potential in gastric cancer with positive lymph node metastasis remains underexplored.This study aimed to elucidate the role of E.helioscopia in treating gastric cancer with lymph node metastasis using an integrative approach that combined network pharmacology,molecular docking,and molecular dynamics simulations.Initially,shared target data between E.helioscopia and gastric cancer with positive lymph node metastasis were identified and systematically analyzed.Subsequently,molecular docking was conducted to validate the interactions between key components and targets.Finally,molecular dynamics simulations were employed,with binding free energy calculations performed using the MM-PBSA algorithm.The findings revealed that the primary bioactive compounds of E.helioscopia in this context included quercetin and luteolin,targeting core molecules such as EGFR and MMP9.Key pathways implicated in its mechanism of action included resistance to EGFR tyrosine kinase inhibitors,among others.Molecular docking demonstrated robust binding affinity between the active compounds and critical targets,with molecular dynamics and binding free energy analyses highlighting a particularly stable interaction between luteolin and MMP9.In conclusion,E.helioscopia exhibited a multi-component,multi-target,and multi-pathway therapeutic profile in treating gastric cancer with positive lymph node metastasis.These findings offered valuable theoretical insights supporting its potential clinical application in oncology. 展开更多
关键词 Euphorbia helioscopia Lymph node metastasis Gastric cancer molecular dynamics Network pharmacology molecular docking
原文传递
Multi-target inhibition property of Persicaria hydropiper phytochemicals against gram-positive and gram-negative bacteria via molecular docking,dynamics simulation,and ADMET analysis
8
作者 Golak Majumdar Shyamapada Mandal 《Digital Chinese Medicine》 2025年第1期76-89,共14页
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method... Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections. 展开更多
关键词 Persicaria hydropiper phytochemicals molecular docking molecular dynamics simulation Bacterial pathogenicity-related proteins PHARMACOKINETICS
暂未订购
Water interactions in molecular sieve catalysis:Framework evolution and reaction modulation
9
作者 Linhai He Caiyi Lou +4 位作者 Lu Sun Jing Niu Shutao Xu Yingxu Wei Zhongmin Liu 《Chinese Journal of Catalysis》 2025年第12期9-31,共23页
Porous molecular sieve catalysts,including aluminosilicate zeolites and silicoaluminophosphate(SAPO)molecular sieves,have found widespread use in heterogeneous catalysis and are expected to play a key role in advancin... Porous molecular sieve catalysts,including aluminosilicate zeolites and silicoaluminophosphate(SAPO)molecular sieves,have found widespread use in heterogeneous catalysis and are expected to play a key role in advancing carbon neutrality and sustainable development.Given the ubiquitous presence of water during catalyst synthesis,storage,and application,the interactions between water and molecular sieves as well as their consequent effects on frameworks and catalytic reactions have attracted considerable attention.These effects are inherently complex and highly dependent on various factors such as temperature,water phase,and partial pressure.In this review,we provide a comprehensive overview of the current understanding of water-molecular sieve interactions and their roles in catalysis,based on both experimental and theoretical calculation results.Special attention is paid to water-induced reversible and irreversible structural changes in aluminosilicate and SAPO frameworks at the atomic level,underscoring the dynamic and labile nature of these frameworks in water environments.The influence of water on catalytic performance and reaction kinetics in molecular sieve-catalyzed reactions is discussed from two perspectives:(1)its participation in reaction through hydrogen bonding interactions,such as competitive adsorption at active sites,stabilization of ground and transition states,and proton transfer bridge;(2)its role as a direct reactant forming new species via reactions with other vip molecules.Recent advancements in this area provide valuable insights for the rational design and optimization of catalysts for water-involved reactions. 展开更多
关键词 WATER molecular sieves Host-vip interactions molecular sieve catalysis Water-assisted/inhibited catalysis
在线阅读 下载PDF
Assessing traditional Chinese medicine from a molecular perspective
10
作者 Minhui Su Wenxi Wang +2 位作者 Xudong Sun Lihong Li Weihong Tan 《Journal of Traditional Chinese Medical Sciences》 2025年第1期3-9,共7页
Molecular medicine,which delves into the intricacies of biomolecular structure,function,and role,is pivotal for advancing precise diagnostics and personalized treatment.Nucleic acids,a class of star functional molecul... Molecular medicine,which delves into the intricacies of biomolecular structure,function,and role,is pivotal for advancing precise diagnostics and personalized treatment.Nucleic acids,a class of star functional molecules,are notable for their versatile applications in molecular diagnostics,gene therapy,and drug development.Therefore,in this study,we review the extensive use of nucleic acid aptamers in medicinal practice.Furthermore,the expanding field of molecular medicine has catalyzed advancements in traditional Chinese medicine(TCM),as evidenced by scientific endeavors to integrate modern technologies.Therefore,TCM has experienced rapid modernization by leveraging artificial intelligence,nucleic acid molecular medicine,and bioelectronic medicine. 展开更多
关键词 molecular medicine Nucleic acid molecular medicine APTAMER Traditional Chinese medicine
暂未订购
Effective approach to stabilize silicon anode:controllable molecular construction of artificial solid electrolyte interphase
11
作者 Hongbin Liu Putao Zhang 《Chinese Journal of Structural Chemistry》 2025年第3期8-9,共2页
Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charg... Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charging and discharging processes,leading to the instability of electrode structure and susceptibility to peeling and damage,limiting its application.Constructing controllable molecular artificial solid electrolyte interphase(CMASEI)is an effective approach to address the commercialization of silicon-based anode materials[1].Improving the performance of silicon-based anodes through CMASEI is a multifaceted outcome. 展开更多
关键词 silicon anode electrode structure stability volume expansion volume expansion contraction COMMERCIALIZATION controllable molecular construction molecular artificial solid electrolyte instability electrode structure
原文传递
Bulk modulus of molecular crystals
12
作者 Xudong Jiang Yajie Wang +1 位作者 Kuo Li Haiyan Zheng 《Chinese Physics B》 2025年第6期1-10,共10页
Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and ... Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and Vinet EOS. Bulk modulus reflects the intermolecular interaction inside molecular crystals, making it useful for researchers to design novel high pressure materials. This review systematically examines bulk moduli of various molecular crystals, including rare-gas solids, di-atom and triplet-atom molecules, saturated organic molecules, and aromatic organic crystals. Comparisons with ionic crystals are presented, along with an analysis of connections between bulk modulus and crystal structures. 展开更多
关键词 high pressure bulk modulus molecular crystal intermolecular interaction
原文传递
Recent advances and challenges in colorectal cancer:From molecular research to treatment 被引量:1
13
作者 Gao-Xiu Qi Rui-Xia Zhao +3 位作者 Chen Gao Zeng-Yan Ma Shang Wang Jing Xu 《World Journal of Gastroenterology》 2025年第21期1-30,共30页
Colorectal cancer(CRC)ranks among the top causes of cancer-related fatalities globally.Recent progress in genomics,proteomics,and bioinformatics has greatly improved our comprehension of the molecular underpinnings of... Colorectal cancer(CRC)ranks among the top causes of cancer-related fatalities globally.Recent progress in genomics,proteomics,and bioinformatics has greatly improved our comprehension of the molecular underpinnings of CRC,paving the way for targeted therapies and immunotherapies.Nonetheless,obstacles such as tumor heterogeneity and drug resistance persist,hindering advancements in treatment efficacy.In this context,the integration of artificial intelligence(AI)and organoid technology presents promising new avenues.AI can analyze genetic and clinical data to forecast disease risk,prognosis,and treatment responses,thereby expediting drug development and tailoring treatment plans.Organoids replicate the genetic traits and biological behaviors of tumors,acting as platforms for drug testing and the formulation of personalized treatment approaches.Despite notable strides in CRC research and treatment-from genetic insights to therapeutic innovations-numerous challenges endure,including the intricate tumor microen-vironment,tumor heterogeneity,adverse effects of immunotherapies,issues related to AI data quality and privacy,and the need for standardization in organoid culture.Future initiatives should concentrate on clarifying the pathogenesis of CRC,refining AI algorithms and organoid models,and creating more effective therapeutic strategies to alleviate the global impact of CRC. 展开更多
关键词 Colorectal cancer molecular TREATMENT Artificial intelligence Organoid
暂未订购
Molecular insights into immune evasion and therapeutic paradigms in pancreatic cancer 被引量:1
14
作者 Ming Li Renyu Zhou +3 位作者 Yu Qiu Yulong Peng Minting Liu Xiaotan Zhang 《Chinese Journal of Cancer Research》 2025年第3期466-486,共21页
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma(PDAC), is one of the most lethal malignancies,which is characterized by a complex tumor microenvironment(TME) that fosters immune evasion and treatment ... Pancreatic cancer, particularly pancreatic ductal adenocarcinoma(PDAC), is one of the most lethal malignancies,which is characterized by a complex tumor microenvironment(TME) that fosters immune evasion and treatment resistance. Recent genomic advancements have unveiled diverse molecular subtypes of PDAC, providing insights into targeted therapies and precision medicine. This review synthesizes the current understanding of PDAC's molecular characterization and immunosuppressive TME, as well as emerging therapeutic strategies, including innovative approaches targeting key molecular pathways such as kirsten rat sarcoma viral oncogene homolog(KRAS), epidermal growth factor receptor(EGFR), and immune checkpoints. Despite advances, challenges remain in overcoming treatment resistance and inherent heterogeneity of pancreatic cancer subtypes. We highlight the need for multidisciplinary collaboration to enhance early diagnosis and develop individualized therapeutic protocols, paving the way for improving the outcomes of this aggressive cancer. This integrated perspective underscores the urgency of transforming the innovative research into pancreatic cancer management. 展开更多
关键词 Pancreatic cancer GENOMICS molecular characteristics MICROENVIRONMENT precision medicine
暂未订购
Molecular breakthroughs in modern plant breeding techniques 被引量:1
15
作者 Mughair Abdul Aziz Khaled Masmoudi 《Horticultural Plant Journal》 2025年第1期15-41,共27页
Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in... Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods. 展开更多
关键词 Plant breeding molecular approaches GENOTYPE PHENOTYPE Crop traits
在线阅读 下载PDF
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
16
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
pH modulation and molecular layer construction for stable zinc batteries 被引量:1
17
作者 Donghong Wang Qiwang Shao +5 位作者 Xianjia Cao Mengxuan Qin Yizhu He Lei Zhu Qing Li Dongming Liu 《Journal of Energy Chemistry》 2025年第3期179-188,共10页
Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical applicat... Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical application of AZIBs.Adjusting the interfacial pH to reduce the by-products has been proven to be effective in protecting the zinc anode.Nevertheless,the dynamic regulation of the inherently unstable zinc interface during prolonged cycling remains a significant challenge.Herein,zwitterionic N-tris(hydroxymethyl)methylglycine(TMG)integrated with negative-COO^(-)and positive NH_(2)^(+)groups is proposed to stabilize the Zn anode and extend the lifespan as a self-regulating interfacial additive.The anionic portion serves as a trapping site to balance the interfacial pH and thus mitigate the unintended side reactions.Simultaneously,the NH_(2)^(+)cations are anchored on the zinc surface,forming a water-shielding,zincophilic molecular layer that guides three-dimensional diffusion and promotes uniform electro-deposition.Thus,an average plating efficiency of 99.74%over 3300 cycles at a current density of2 mA cm^(-2)is achieved.Notably,the TMG additive actualizes ultralong life in Zn‖Zn symmetrical cells(5500 h,exceeding 229 days,1 mA cm^(-2)/1 mA h cm^(-2)),and enables the Zn‖I_(2)cells to reach capacity retention rate of 89.4%after 1000 cycles at 1 A g^(-1). 展开更多
关键词 Aqueous zinc ion battery Zn dendrites pHDynamic regulation molecular layer Zn-12
在线阅读 下载PDF
Applications of artificial intelligence in the research of molecular mechanisms of traditional Chinese medicine formulas 被引量:1
18
作者 Hongyu Chen Ruotian Tang +5 位作者 Mei Hong Jing Zhao Dong Lu Xin Luan Guangyong Zheng Weidong Zhang 《Chinese Journal of Natural Medicines》 2025年第11期1329-1341,共13页
Traditional Chinese medicine formula(TCMF)represents a fundamental component of Chinese medical practice,incorporating medical knowledge and practices from both Han Chinese and various ethnic minorities,while providin... Traditional Chinese medicine formula(TCMF)represents a fundamental component of Chinese medical practice,incorporating medical knowledge and practices from both Han Chinese and various ethnic minorities,while providing comprehensive insights into health and disease.The foundation of TCMF lies in its holistic approach,manifested through herbal compatibility theory,which has emerged from extensive clinical experience and evolved into a highly refined knowledge system.Within this framework,Chinese herbal medicines exhibit intricated characteristics,including multi-component interactions,diverse target sites,and varied biological pathways.These complexities pose significant challenges for understanding their molecular mechanisms.Contemporary advances in artificial intelligence(AI)are reshaping research in traditional Chinese medicine(TCM),offering immense potential to transform our understanding of the molecular mechanisms underlying TCMFs.This review explores the application of AI in uncovering these mechanisms,highlighting its role in compound absorption,distribution,metabolism,and excretion(ADME)prediction,molecular target identification,compound and target synergy recognition,pharmacological mechanisms exploration,and herbal formula optimization.Furthermore,the review discusses the challenges and opportunities in AI-assisted research on TCMF molecular mechanisms,promoting the modernization and globalization of TCM. 展开更多
关键词 Artificial intelligence Traditional Chinese Medicine Formula molecular Mechanism Machine learning Knowledge graph
原文传递
Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp.HL-50 guided by molecular networking and their antiinflammatory activity 被引量:1
19
作者 Chunxue Yu Zixuan Xia +6 位作者 Zhipeng Xu Xiyang Tang Wenjuan Ding Jihua Wei Danmei Tian Bin Wu Jinshan Tang 《Chinese Journal of Natural Medicines》 2025年第1期119-128,共10页
Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid ... Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases. 展开更多
关键词 Penicillium sp.HL-50 Curvularin derivatives molecular networking Anti-inflammatory activity
原文传递
Applications of molecular dynamics simulation in studying shale oil reservoirs at the nanoscale:Advances,challenges and perspectives 被引量:1
20
作者 Lu Wang Yi-Fan Zhang +6 位作者 Run Zou Yi-Fan Yuan Rui Zou Liang Huang Yi-Sheng Liu Jing-Chen Ding Zhan Meng 《Petroleum Science》 2025年第1期234-254,共21页
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e... The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs. 展开更多
关键词 molecular dynamics Shale oil reservoirs NANOPORES Enhanced oil recovery Fluid flow behavior Shale oil occurrence
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部