The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption...The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption on the Mo_2C/ Al_2O_3 catalyst.The appearance of a strong band at 1578 cm^(-1) indicates that CH_3CN was reactive with hydrogen on the Mo_2C/Al_2O_3 catalyst.展开更多
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a...Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.展开更多
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou...Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).展开更多
利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色...利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。展开更多
文摘The adsorption of acetonitrile and its co-adsorption with CO on fresh Mo_2C/Al_2O_3 catalyst have been studied by insitu FT-IR spectroscopy.Linearly adsorbed CH_3CN and CH_3CH_2NH_2 were formed after CH_3CN adsorption on the Mo_2C/ Al_2O_3 catalyst.The appearance of a strong band at 1578 cm^(-1) indicates that CH_3CN was reactive with hydrogen on the Mo_2C/Al_2O_3 catalyst.
基金supported by the National Natural Science Foundation of China (No. 52374292)China Baowu Low Carbon Metallurgy Innovation Foundation, China (No. BWLCF202309)the Natural Science Foundation of Changsha City, China (No. KQ2208271)。
文摘Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.
基金supported by the National Natural Science Foundation of China(22175136)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23127)the Fundamental Research Funds for the Central Universities(xtr052024009).
文摘Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).
文摘利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。