A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the a...A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the acidity of the obtained nanoporous MoO3/ZrO2 mixed oxide were determined by means of XRD, N2 adsorption-desorption and NH3-TPD, respectively. The isobutane/butene alkylation over the MoO3/ZrO2 catalyst was carried out in a fixed bed reactor. The results reveal that ZrO2 in MoO3/ZrO2 exists mainly in the tetragonal phase, and the catalyst samples possess large specific surface areas as well as moderate acidity for isobutane/butene alkylation. Compared with samples prepared by impregnation and sol-gel processes, MoO3/ZrO2 mixed oxide samples prepared in this work have a better catalytic activity.展开更多
文摘A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the acidity of the obtained nanoporous MoO3/ZrO2 mixed oxide were determined by means of XRD, N2 adsorption-desorption and NH3-TPD, respectively. The isobutane/butene alkylation over the MoO3/ZrO2 catalyst was carried out in a fixed bed reactor. The results reveal that ZrO2 in MoO3/ZrO2 exists mainly in the tetragonal phase, and the catalyst samples possess large specific surface areas as well as moderate acidity for isobutane/butene alkylation. Compared with samples prepared by impregnation and sol-gel processes, MoO3/ZrO2 mixed oxide samples prepared in this work have a better catalytic activity.