期刊文献+
共找到700篇文章
< 1 2 35 >
每页显示 20 50 100
Microfluidic systems for axonal growth and regeneration research
1
作者 Sunja Kim Jaewon Park +1 位作者 Arum Han Jianrong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1703-1705,共3页
Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen in- creasing research efforts in neural regen... Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen in- creasing research efforts in neural regeneration research with the ultimate goal of achieving functional recovery. Many studies have focused on prevention of further neural damage and restoration of functional connections that are com- promised after iniurY or pathological damage. 展开更多
关键词 microfluidic systems for axonal growth and regeneration research CNS FIGURE
暂未订购
Engineering organoid microfluidic system for biomedical and health engineering:A review 被引量:5
2
作者 Yifan Xing Junyu Liu +9 位作者 Xiaojie Guo Haipeng Liu Wen Zeng Yi Wang Chong Zhang Yuan Lu Dong He Shaohua Ma Yonghong He Xin-Hui Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期244-254,共11页
In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells ... In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells or organ-progenitor cells in vitro using 3D culture technology.They can replicate the key structural and functional characteristics of the target organs in vivo.With the opening up of this new field of health engineering,there is a need for engineering-system approaches to the production,control,and quantitative analysis of organoids and their microenvironment.Traditional organoid technology has limitations,including lack of physical and chemical microenvironment control,high heterogeneity,complex manual operation,imperfect nutritional supply system,and lack of feasible online analytical technology for the organoids.The introduction of microfluidic chip technology into organoids has overcome many of these limitations and greatly expanded the scope of applications.Engineering organoid microfluidic system has become an interdisciplinary field in biomedical and health engineering.In this review,we summarize the development and culture system of organoids,discuss how microfluidic technology has been used to solve the main technical challenges in organoid research and development,and point out new opportunities and prospects for applications of organoid microfluidic system in drug development and screening,food safety,precision medicine,and other biomedical and health engineering fields. 展开更多
关键词 ORGANOIDS Stem cell Culture system microfluidicS Biomedical engineering Human health
暂未订购
A Camouflaged Film Imitating the Chameleon Skin with Color-Changing Microfluidic Systems Based on the Color Information Identification of Background 被引量:2
3
作者 Huanhuan Li Tianhang Yang +2 位作者 Lujia Li Sining Lv Songjing Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第5期1137-1146,共10页
To adapt to a complex and variable environment,self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage.In natur... To adapt to a complex and variable environment,self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage.In nature,the chameleon can achieve self-adaptive camouflage by changing its skin color in real time with the change of the background color.To imitate the chameleon skin,a camouflaged film controlled by a color-changing microfluidic system is proposed in this paper.The film with microfluidic channels fabricated by soft materials can achieve dynamic cloaking and camouflage by circulating color liquids through channels inside the film.By sensing and collecting environmental color change information,the control signal of the microfluidic system can be adjusted in real time to imitate chameleon skin.The microstructure of the film and the working principle of the microfluidic color-changing system are introduced.The mechanism to generate the control signal by information processing of background colors is illustrated.“Canny”double-threshold edge detection algorithm and color similarity are used to analyze and evaluate the camouflage.The tested results show that camouflaged images have a relatively high compatibility with environmental backgrounds and the dynamic cloaking eff ect can be achieved. 展开更多
关键词 microfluidic SELF-ADAPTIVE CAMOUFLAGE CHAMELEON Bionic skin
在线阅读 下载PDF
Multiple exosome RNA analysis methods for lung cancer diagnosis through integrated on-chip microfluidic system 被引量:2
4
作者 Yunxing Lu Zhaoduo Tong +6 位作者 Zhenhua Wu Xiaoyu Jian Lin Zhou Shihui Qiu Chuanjie Shen Hao Yin Hongju Mao 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第6期3188-3192,共5页
Exosomes are now raising focus as a prospective biomarker for cancer diagnostics and prognosis owing to its unique bio-origin and composition.Exosomes take part in cellular communication and receptor mediation and tra... Exosomes are now raising focus as a prospective biomarker for cancer diagnostics and prognosis owing to its unique bio-origin and composition.Exosomes take part in cellular communication and receptor mediation and transfer their cargos(e.g.,proteins,m RNA and DNA).Quantitative analysis of tumor-related nucleic acid mutations can be a potential method to cancer diagnosis and prognosis in early stages.Here we present an integrated microfluidic system for exosome on-chip isolation and lung cancer RNA analysis through droplet digital PCR(dd PCR).Gradient dilution experiments show great linearity over a large concentration range with R^(2)=0.9998.Utilizing the system,four cell lines and two mutation targets were parallelly detected for mutation analysis.The experiments demonstrated mutation heterogeneity and the results were agree with cell researches.These results proved our integrated microfluidic system as a promising means for early cancer diagnosis and prognosis in the era of liquid biopsy. 展开更多
关键词 EXOSOME Integrated processing RNA analysis microfluidicS Droplet digital PCR
原文传递
Microfluidic System for Synthesis of Trigonal Selenium Nanowires 被引量:1
5
作者 BIAN Tian-bin YIN Xue-feng LIU Jin-hua 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第4期522-526,共5页
A microfluidic system was developed for the synthesis of trigonal selenium(t-Se) nanowires, which was composed of a glass microchip coupled with a poly(methyl methacrylate)(PMMA) microchip. In the glass microchi... A microfluidic system was developed for the synthesis of trigonal selenium(t-Se) nanowires, which was composed of a glass microchip coupled with a poly(methyl methacrylate)(PMMA) microchip. In the glass microchip, amorphous selenium(a-Se) colloid was prepared by reducing selenious acid with an excess amount of hydrazine at a temperature of 100 ℃. In the coupled PMMA microchip, a-Se was transformed into more stable t-Se seeds via sonication at room temperature. The residence time of the reactants in both microchips was optimized by varying the dimension and length of the microchannel each. The t-Se nanowires were formed by anisotropic growth of selenium crystallite during sonication and aging under the assistance of β-cyclodextrin(β-CD). Various stages of the nanowires' growth were investigated. The as-synthesized products were characterized by powder X-Ray diffraction(XRD), Raman spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and selected-area electron diffraction(SAED). 展开更多
关键词 microfluidic Trigonal selenium nanowire Sonication
在线阅读 下载PDF
A Microfluidic System with Active Mixing for Improved Real-Time Isothermal Amplification
6
作者 Dianlong Yang Xiaodan Jiang +4 位作者 Yijie Zhou Xiaobin Dong Luyao Liu Lulu Zhang Xianbo Qiu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第3期275-284,共10页
To improve the performance of real-time recombinase polymerase amplification(RPA),a microfluidic system with active mixing is developed to optimize the reaction dynamics.Instead of adopting a single typical reaction c... To improve the performance of real-time recombinase polymerase amplification(RPA),a microfluidic system with active mixing is developed to optimize the reaction dynamics.Instead of adopting a single typical reaction chamber,a specific reactor including a relatively large chamber in center with two adjacent zig-zag channels at two sides is integrated into the microfluidic chip.Active mixing is achieved by driving the viscous reagent between the chamber and the channel back and forth periodically with an outside compact peristaltic pump.To avoid reagent evapora-tion,one end of the reactor is sealed with paraffin oil.A hand-held companion device is developed to facilitate real-time RPA amplification within 20 min.The whole area of the reactor is heated with a resistance heater to provide uniform reaction temperature.To achieve real-time monitoring,a compact fluorescence detection module is integrated into the hand-held device.A smartphone with custom application software is adopted to control the hand-held device and display the real-time fluorescence curves.The performances of two cases with and without active on-chip mixing are compared between each other by detecting African swine fever viruses.It has been demonstrated that,with active on-chip mixing,the amplification efficiency and detection sensitivity can be signifi-cantly improved. 展开更多
关键词 recombinase polymerase amplification(RPA) microfluidic chip active mixing optical detection SMARTPHONE
在线阅读 下载PDF
Research on the Camouflage Characteristics of a Microfluidic Vision Camouflage System Based on the Image Inpainting Algorithm
7
作者 Jian Cao Huanhuan Li +2 位作者 Songjing Li Jiyan He Zhifan Li 《Journal of Bionic Engineering》 2025年第1期370-382,共13页
Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating th... Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment. 展开更多
关键词 Chameleon skin Bionic skin microfluidic technology Self-adaptive system Camouflage film
在线阅读 下载PDF
A lateral-immobilization zebrafish microfluidic chip-based system for in vivo real-time evaluation of antithrombotic agents
8
作者 Lijuan He Hongxia Du +5 位作者 Yi Yang Zhihua Guan Jinjin Li Honglin Li Xudong Lin Lili Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期312-315,共4页
Thrombosis remains a major global health concern mainly characterized by high rates of morbidity and mortality.Animal models serve as an indispensable tool to understand the underlying pathogenesis of thrombosis and a... Thrombosis remains a major global health concern mainly characterized by high rates of morbidity and mortality.Animal models serve as an indispensable tool to understand the underlying pathogenesis of thrombosis and assess the efficacy of novel antithrombotic drugs.Currently,zebrafish has emerged as a valuable model organism for thrombosis research.However,the traditional method of studying zebrafish thrombosis requires a laborious and time-consuming procedure,including anesthesia and manual immobilization of zebrafish.In this study,based on hydrodynamic force,a lateral-immobilization zebrafish microfluidic chip(LIZMC)was designed to evaluate the cardiovascular system of multiple larvae within a single microscope field of view.Specifically,coupling with microscope imaging,real-time monitoring of the peripheral blood circulation in the tail of phenylhydrazine(PHZ)-induced zebrafish thrombosis was enabled.Furthermore,the reliability of LIZMC for in vivo evaluation of antithrombotic agents in zebrafish was verified using aspirin.Collectively,this novel LIZMC-based system can be used for in vivo zebrafish thrombosis studies and rapid screening of antithrombotic agents. 展开更多
关键词 microfluidic chip ZEBRAFISH THROMBOSIS In vivo evaluation Real-time monitor
原文传递
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
9
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 Droplet microfluidic technology Interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Research Progress on Microfluidic Paper-based Analytical Devices for Point-of-care Testing 被引量:1
10
作者 ZHANG Yuji XU Ruicheng SHAN Dan 《激光生物学报》 2025年第1期1-11,共11页
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by... Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided. 展开更多
关键词 point-of-care testing microfluidic paper-based analytical devices SENSOR personalized medical treatment portable diagnostic equipment
在线阅读 下载PDF
Machine learning-assisted microfluidic approach for broad-spectrum liposome size control 被引量:1
11
作者 Yujie Jia Xiao Liang +6 位作者 Li Zhang Jun Zhang Hajra Zafar Shan Huang Yi Shi Jian Chen Qi Shen 《Journal of Pharmaceutical Analysis》 2025年第6期1238-1248,共11页
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide... Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications. 展开更多
关键词 Liposomes microfluidicS Liposomal size SHM Machine learning
在线阅读 下载PDF
Design of Droplet Microfluidic Sorting and Counting System based on Object Detection and Tracking Algorithm
12
作者 Pengjian Wang Xianqiang Mi 《Modern Electronic Technology》 2024年第1期15-21,共7页
Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulatio... Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process,resulting in most droplets being either empty or containing multiple cells.Traditional single-cell sorting methods typically rely on fluorescence labeling for identification,but this approach not only increases experimental costs and complexity but can also impact cell viability.Additionally,current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates.To address these challenges,this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms.This system enables real-time analysis of droplet images,facilitating precise identification,counting,and automated sorting of target droplets.To validate the system’s performance,polystyrene microspheres were used to simulate real cells in sorting tests.The results demonstrated that,under label-free conditions,the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency.This system provides an effective,label-free solution for cell sorting,with potential applications in precision medicine,single-cell sequencing,and drug screening. 展开更多
关键词 droplet sorting droplet microfluidics object detection object tracking image recognition
在线阅读 下载PDF
Catalpol Promotes Differentiation of Neural Stem Cells into Oligodendrocyte via Caveolin-1-dependent Pathway in The 3D Microfluidic Chip
13
作者 WANG Ya-Chen WANG Liang +1 位作者 SHEN Li-Ming LIU Jing 《生物化学与生物物理进展》 北大核心 2025年第11期2842-2853,共12页
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri... Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation. 展开更多
关键词 CATALPOL neural stem cells OLIGODENDROCYTES DIFFERENTIATION CAVEOLIN-1 microfluidic chip
原文传递
Microfluidic reactors for paired electrosynthesis:Fundamentals,applications and future prospects
14
作者 Hao Xue Zhi-Hao Zhao +1 位作者 Menglei Yuan Guangjin Zhang 《Green Energy & Environment》 2025年第3期471-499,共29页
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still... Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies. 展开更多
关键词 Paired electrosynthesis microfluidic reactor Laminar flow Scaling-up strategy
在线阅读 下载PDF
A microfluidic study on the influence of naturally fractured porous media on the phase behavior of condensate gas depletion
15
作者 Kuiqian Ma Shuoshi Wang +6 位作者 Lei Zhang Haojun Wu Jintao Wu Ping Guo Lei Huang Qixuan Zhang Limiao Wang 《Natural Gas Industry B》 2025年第4期432-446,共15页
There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct... There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications. 展开更多
关键词 Condensate gas microfluidic Depletion Constant volume depletion
在线阅读 下载PDF
Microfluidic Barcode Biochips for High-Throughput Real-Time Biomolecule and Single-Cell Screening
16
作者 Jiaoyan Qiu Yanbo Liang +4 位作者 Chao Wang Yang Yu Yu Zhang Hong Liu Lin Han 《Engineering》 2025年第3期130-146,共17页
The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrat... The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization. 展开更多
关键词 HIGH-THROUGHPUT microfluidic barcode biochip Single-cell analysis Biomolecules
在线阅读 下载PDF
Synthesis of energetic materials by microfluidics
17
作者 Shuo Liu Chuanyu Zhang +1 位作者 Yanlan Wang Xueyong Wei 《Defence Technology(防务技术)》 2025年第2期306-319,共14页
Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fl... Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions. 展开更多
关键词 microfluidic technology Energetic materials synthesis MICRO-MIXING Micro-droplets
在线阅读 下载PDF
A Stable,Reliable,Cost-Effective Technique Route for Ni Detection in Industrial Wastewater via a Microfluidic Paper-Based Platform
18
作者 Xiuxia Li Qing’er Yao +11 位作者 Jiangyue Bai Zihang Wang Xiaolu Xiong Zifan Ning Songhe Liu Shiqi Xu Chunpan Zhang Yujiu Jiang Mingxu Chu Yanbo Yang Dong Jiang Junfeng Han 《Journal of Environmental & Earth Sciences》 2025年第4期280-290,共11页
Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for de... Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent. 展开更多
关键词 Nickel Detection Industrial Wastewater Detection microfluidic Paper-Based Chips Analytical Device
在线阅读 下载PDF
Bubble breakup in viscous liquids at a microfluidic T-junction
19
作者 Hongwei Zhu Junjie Feng +5 位作者 Ziyi Xu Chunying Zhu Youguang Ma Wei Xu Bing Sun Taotao Fu 《Chinese Journal of Chemical Engineering》 2025年第2期44-57,共14页
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-... Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity. 展开更多
关键词 BUBBLE microfluidicS MICROCHANNEL BREAKUP Viscous fluid
在线阅读 下载PDF
Dual-scale insights of two-phase flow in inter-cleats based on microfluidics:Interface jumps and energy dissipation
20
作者 Jicheng Zhang Dawei Lv +3 位作者 Jon Jincai Zhang Feng Wang Dawei Yin Haiyang Yu 《International Journal of Mining Science and Technology》 2025年第3期451-465,共15页
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c... Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media. 展开更多
关键词 Inter-cleat microfluidicS Two-phase flow Dual-scale Interface jump Inertial effect
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部