BACKGROUND Shifting from the inflammatory to the proliferative phase represents a pivotal step during managing diabetic foot ulcers(DFUs);however,existing medical interventions remain insufficient.MicroRNAs(miRs)highl...BACKGROUND Shifting from the inflammatory to the proliferative phase represents a pivotal step during managing diabetic foot ulcers(DFUs);however,existing medical interventions remain insufficient.MicroRNAs(miRs)highlight notable capacity for accelerating the repair process of DFUs.Previous research has demonstrated which miR-122-5p regulates matrix metalloproteinases under diabetic conditions,thereby influencing extracellular matrix dynamics.AIM To investigate the impact of miR-122-5p on the transition from the inflammatory to the proliferative stage in DFU.METHODS Analysis for miR-122-5p expression in skin tissues from diabetic ulcer patients and mice was analyzed using quantitative real-time polymerase chain reaction(qRT-PCR).A diabetic wound healing model induced by streptozotocin was used,with mice receiving intradermal injections of adeno-associated virus-DJ encoding empty vector or miR-122.Skin tissues were retrieved at 3,7,and 14 days after injury for gene expression analysis,histology,immunohistochemistry,and network studies.The study explored miR-122-5p’s role in macrophage-fibroblast interactions and its effect on transitioning from inflammation to proliferation in DFU healing.RESULTS High-throughput sequencing revealed miR-122-5p as crucial for DFU healing.qRT-PCR showed significant upregulation of miR-122-5p within diabetic skin among DFU individuals and mice.Western blot,along with immunohistochemical and enzyme-linked immunosorbent assay,demonstrating the upregulation of inflammatory mediators(hypoxia inducible factor-1α,matrix metalloproteinase 9,tumor necrosis factor-α)and reduced fibrosis markers(fibronectin 1,α-smooth muscle actin)by targeting vascular endothelial growth factor.Fluorescence in situ hybridization indicated its expression localized to epidermal keratinocytes and fibroblasts in diabetic mice.Immunofluorescence revealed enhanced increased presence of M1 macrophages and reduced M2 polarization,highlighting its role in inflammation.MiR-122-5p elevated inflammatory cytokine levels while suppressing fibrotic activity from fibroblasts exposed to macrophage-derived media,highlighting its pivotal role in regulating DFU healing.CONCLUSION MiR-122-5p impedes cutaneous healing of diabetic mice via enhancing inflammation and inhibiting fibrosis,offering insights into miR roles in human skin wound repair.展开更多
Elemene is widely recognized as an effective anti-cancer compound and is routinely administered in Chinese clinical settings for the management of several solid tumors,including non-small cell lung cancer(NSCLC).Howev...Elemene is widely recognized as an effective anti-cancer compound and is routinely administered in Chinese clinical settings for the management of several solid tumors,including non-small cell lung cancer(NSCLC).However,its detailed molecular mechanism has not been adequately demonstrated.In this research,it was demonstrated that elemene effectively curtailed NSCLC growth in the patient-derived xenograft(PDX)model.Mechanistically,employing high-throughput screening techniques and subsequent biochemical validations such as microscale thermophoresis(MST),microRNA-145-5p(miR-145-5p)was pinpointed as a critical target through which elemene exerts its anti-tumor effects.Interestingly,elemene serves as a binding stabilizer for miR-145-5p,demonstrating a strong binding affinity(dissociation constant(KD)=0.39±0.17μg/mL)and preventing its degradation both in vitro and in vivo,while not interfering with the synthesis of the primary microRNA transcripts(pri-miRNAs)and precursor miRNAs(pre-miRNAs).The stabilization of miR-145-5p by elemene resulted in an increased level of this miRNA,subsequently suppressing NSCLC progression through the miR-145-5p/mitogen-activated protein kinase kinase kinase 3(MAP3K3)/nuclear factor kappaB(NF-κB)pathway.Our findings provide a new perspective on revealing the interaction patterns between clinical anti-tumor drugs and miRNAs.展开更多
文摘目的:探讨基于微小核糖核酸(micrornas,miR)-221-3p、miR-155-5p及英国胸科协会改良肺炎(confusion,uremia,respiratory,BP,age 65years,CURB-65)评分构建的Nomogram预测模型对重症肺炎(severe pneumonia,SP)预后不良的预测价值。方法:前瞻性选取2021年1月至2024年6月宜春市人民医院收治的439例SP患者,按7:3比例随机分为建模组(n=307)与验证组(n=132)。治疗前检测患者血清miR-221-3p、miR-155-5p水平,并使用CURB-65得分进行评估。观察患者住院28 d内预后情况,根据28 d内预后情况将SP患者分为死亡组与存活组。采用Lasso回归分析SP患者预后不好的影响因素,多元素Logistic回归分析SP预后不良的危险因素。构建SP患者预后不良Nomogram预测模型,并采用受试者工作特征(receiver operating characteristic,ROC)曲线评估Nomogram模型对SP预后不良的预测效能。结果:建模组、验证组死亡率分别为29.32%(90/307)、28.79%(38/132),两组死亡率以及临床资料比较无统计学差异(P>0.05)。建模、验证人群中死亡组的年龄、肺部基础疾病比例、肺炎严重指数(pneumonia severity index,PSI)评分、急性生理学和慢性健康状况评分系统Ⅱ(Acute Physiology and Chronic Health EvaluationⅡ,APACHEⅡ)评分、CURB-65评分、血清miR-221-3p、miR-155-5p、C反应蛋白(C-reactive protein,CRP)、白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、降钙素原(procalcitonin,PCT)指标均高于存活组(P<0.05)。Logistic多因素回归分析显示高龄、高APACHEⅡ评分、miR-221-3p高表达、miR-155-5p高表达、高CURB-65评分是SP预后不良的危险因素(P<0.05)。构建的SP预后不良Nomogram预测模型对SP预后不良的曲线下面积(area under the curve,AUC)达0.824,具有良好的预测效能。结论:miR-221-3p高表达、miR-155-5p高表达、高CURB-65评分、高龄、高APACHEⅡ评分是SP患者预后不良的危险因素,基于上述因素构建的Nomogram预测模型对SP预后不良的预测价值较高。
基金Supported by the National Natural Science Foundation of China,No.82274528.
文摘BACKGROUND Shifting from the inflammatory to the proliferative phase represents a pivotal step during managing diabetic foot ulcers(DFUs);however,existing medical interventions remain insufficient.MicroRNAs(miRs)highlight notable capacity for accelerating the repair process of DFUs.Previous research has demonstrated which miR-122-5p regulates matrix metalloproteinases under diabetic conditions,thereby influencing extracellular matrix dynamics.AIM To investigate the impact of miR-122-5p on the transition from the inflammatory to the proliferative stage in DFU.METHODS Analysis for miR-122-5p expression in skin tissues from diabetic ulcer patients and mice was analyzed using quantitative real-time polymerase chain reaction(qRT-PCR).A diabetic wound healing model induced by streptozotocin was used,with mice receiving intradermal injections of adeno-associated virus-DJ encoding empty vector or miR-122.Skin tissues were retrieved at 3,7,and 14 days after injury for gene expression analysis,histology,immunohistochemistry,and network studies.The study explored miR-122-5p’s role in macrophage-fibroblast interactions and its effect on transitioning from inflammation to proliferation in DFU healing.RESULTS High-throughput sequencing revealed miR-122-5p as crucial for DFU healing.qRT-PCR showed significant upregulation of miR-122-5p within diabetic skin among DFU individuals and mice.Western blot,along with immunohistochemical and enzyme-linked immunosorbent assay,demonstrating the upregulation of inflammatory mediators(hypoxia inducible factor-1α,matrix metalloproteinase 9,tumor necrosis factor-α)and reduced fibrosis markers(fibronectin 1,α-smooth muscle actin)by targeting vascular endothelial growth factor.Fluorescence in situ hybridization indicated its expression localized to epidermal keratinocytes and fibroblasts in diabetic mice.Immunofluorescence revealed enhanced increased presence of M1 macrophages and reduced M2 polarization,highlighting its role in inflammation.MiR-122-5p elevated inflammatory cytokine levels while suppressing fibrotic activity from fibroblasts exposed to macrophage-derived media,highlighting its pivotal role in regulating DFU healing.CONCLUSION MiR-122-5p impedes cutaneous healing of diabetic mice via enhancing inflammation and inhibiting fibrosis,offering insights into miR roles in human skin wound repair.
基金supported by the National Natural Science Foundation of China(Grant No.:82225048)the Dalian Science and Technology Leading Talents Project,China(Grant No.:2019RD15)Sanming Project of Medicine in Shenzhen,China(Grant No.:SZZYSM202106004).
文摘Elemene is widely recognized as an effective anti-cancer compound and is routinely administered in Chinese clinical settings for the management of several solid tumors,including non-small cell lung cancer(NSCLC).However,its detailed molecular mechanism has not been adequately demonstrated.In this research,it was demonstrated that elemene effectively curtailed NSCLC growth in the patient-derived xenograft(PDX)model.Mechanistically,employing high-throughput screening techniques and subsequent biochemical validations such as microscale thermophoresis(MST),microRNA-145-5p(miR-145-5p)was pinpointed as a critical target through which elemene exerts its anti-tumor effects.Interestingly,elemene serves as a binding stabilizer for miR-145-5p,demonstrating a strong binding affinity(dissociation constant(KD)=0.39±0.17μg/mL)and preventing its degradation both in vitro and in vivo,while not interfering with the synthesis of the primary microRNA transcripts(pri-miRNAs)and precursor miRNAs(pre-miRNAs).The stabilization of miR-145-5p by elemene resulted in an increased level of this miRNA,subsequently suppressing NSCLC progression through the miR-145-5p/mitogen-activated protein kinase kinase kinase 3(MAP3K3)/nuclear factor kappaB(NF-κB)pathway.Our findings provide a new perspective on revealing the interaction patterns between clinical anti-tumor drugs and miRNAs.