Structure determination plays the most crucial role in the discovery of novel functional materials,because only by knowing the intrinsic structures can we accurately and completely understand their properties and appl...Structure determination plays the most crucial role in the discovery of novel functional materials,because only by knowing the intrinsic structures can we accurately and completely understand their properties and applications.However,most new materials are obtained in polycrystalline form or even as mixtures with multiple phases when first synthesized,presenting significant challenges in their structure determination and phase elucidation.Fortunately,the developed three-dimensional electron diffraction(3DED/MicroED)has provided a promising solution to overcome these challenges.In this study,we have constructed a state-of-the-art 3DED/MicroED data acquisition equipment by integrating a hybrid-pixel detector with a script developed for Serial EM,and thus successfully developed an automated 3DED/MicroED method for the high-throughput structure determination.To demonstrate its effectiveness,a multiphase sample with complex porous structures is employed,showcasing that individual phases and their structures can be identified and determined,respectively.One remarkable finding is the identification of an impurity metal-organic framework(MOF)that is completely invisible to traditional powder X-ray diffraction in a supposedly“pure”commercial MOF sample.Additionally,our method also enables the atomic-resolution structure determination of flexible covalent organic framework materials,which are highly sensitive to electron beams.Moreover,a new microporous aluminoborate is discovered using this rapid structure determination method.These experimental results highlight the enormous potential of our 3DED/MicroED method in the field of new materials discovery,offering a powerful tool for the structure determination of polycrystalline functional materials.展开更多
Porous materials have garnered significant attention in recent years.Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures.Single-crysta...Porous materials have garnered significant attention in recent years.Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures.Single-crystal X-ray diffraction(SCXRD)has traditionally been the primary method for elucidating such structures,but it demands large,high-quality crystals,often exceeding 5μm in size.The growth of these crystals can be a time-consuming process,especially for one-and two-dimensional materials.To explore structures at the nanoscale,MicroED(microcrystal electron diffraction(ED))offers unprecedented insights into the realm of nanomaterials.This revolutionary technique enables researchers to uncover intricate details within nanoscale structures,promising to reshape our fundamental understanding of materials.In this review,we delve into the applications of MicroED in the study of various porous materials,including zeolites,metal-organic frameworks(MOFs),and covalent organic frameworks(COFs).We emphasize the pivotal role of MicroED in nanomaterial characterization,enabling precise crystallographic analysis and phase identification.展开更多
In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurabi...In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.展开更多
Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always...Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always struggle to balance mechanical properties and thermal insulation,resulting in their inability to meet the demands for both washing resistance and personal protection.Herein,inspired by the natural spring-like structures of cucumber tendrils,a superelastic and washable micro/nanofibrous sponge(MNFS)based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation.By regulating the conductivity of polyvinylidene fluoride solution,multiple-jet ejection and multiple-stage whipping of jets are achieved,and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers,which are directly entangled to assemble MNFS.The resulting MNFS exhibits superelasticity that can withstand large tensile strain(200%),1000 cyclic tensile or compression deformations,and retain good resilience even in liquid nitrogen(-196℃).Furthermore,the MNFS shows efficient thermal insulation with low thermal conductivity(24.85 mW m^(-1)K^(-1)),close to the value of dry air,and remains structural stability even after cyclic washing.This work offers new possibilities for advanced fibrous sponges in transportation,environmental,and energy applications.展开更多
Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th...Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.展开更多
Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and intro...Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO_(2)nanobubble technology to improve the performance of cement-fly ash-based backfill materials(CFB).The properties including fluidity,setting time,uniaxial compressive strength,elastic modulus,porosity,microstructure and CO_(2)storage performance were systematically studied through methods such as fluidity evaluation,time test,uniaxial compression test,mercury intrusion porosimetry(MIP),scanning electron microscopy-energy dispersive spectroscopy analysis(SEM-EDS),and thermogravimetric-differential thermogravimetric analysis(TG-DTG).The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO_(2)nanobubbles.When the fractal dimension reaches 2.65,the mass ratio of coarse and fine aggregates reaches the optimal balance,and the structural density is greatly improved at the same time.At this time,the uniaxial compressive strength and elastic modulus reach their peak values,with increases of up to 13.46%and 27.47%,respectively.CO_(2)nanobubbles enhance the material properties by promoting hydration reaction and carbonization.At the microscopic level,CO_(2)nanobubble water promotes the formation of C-S-H(hydrated calcium silicate),C-A-S-H(hydrated calcium aluminium silicate)gel and CaCO_(3),which is the main way to enhance the performance.Thermogravimetric studies have shown that when the fractal dimension is 2.65,the dehydration of hydration products and the decarbonization process of CaCO_(3)are most obvious,and CO_(2)nanobubble water promotes the carbonization reaction,making it surpass the natural state.The CO_(2)sequestration quality of cement-fly ash-based materials treated with CO_(2)nanobubble water at different fractal dimensions increased by 12.4wt%to 99.8wt%.The results not only provide scientific insights for the design and implementation of low-carbon filling materials,but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization.展开更多
[2+2]-Type cyclobutane derivatives comprise a large family of natural products with diverse molecular architectures.However,the structure elucidation of the cyclobutane ring,including its connection mode and stereoche...[2+2]-Type cyclobutane derivatives comprise a large family of natural products with diverse molecular architectures.However,the structure elucidation of the cyclobutane ring,including its connection mode and stereochemistry,presents a significant challenge.Plumerubradins A-C(1-3),three novel iridoid glycoside[2+2]dimers featuring a highly functionalized cyclobutane core and multiple stereogenic centers,were isolated from the flowers of Plumeria rubra.Through biomimetic semisynthesis and chemical degradation of compounds 1-3,synthesis of phenylpropanoid-derived[2+2]dimers 7-10,combined with extensive spectroscopic analysis,single-crystal X-ray crystallography,and microcrystal electron diffraction experiments,the structures with absolute configurations of 1-3 were unequivocally elucidated.Furthermore,quantum mechanics-based^(1)H NMR iterative full spin analysis successfully established the correlations between the signal patterns of cyclobutane protons and the structural information of the cyclobutane ring in phenylpropanoid-derived[2+2]dimers,providing a diagnostic tool for the rapid structural elucidation of[2+2]-type cyclobutane derivatives.展开更多
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have...3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.展开更多
The poor surface conditions and osseointegration capacity of 3D printed Ti6Al4V implants(3DPT)significantly influence their performance as orthopedic and dental implants.In this work,we creatively introduce a one-step...The poor surface conditions and osseointegration capacity of 3D printed Ti6Al4V implants(3DPT)significantly influence their performance as orthopedic and dental implants.In this work,we creatively introduce a one-step femtosecond laser treatment to improve the surface conditions and osteointegration.The surface characterization,mechanical properties,corrosion resistance,and biological responses were investigated.These results found that femtosecond laser eliminated defects like embedded powders and superficial cracks while forming the nano cones-like structures surface on 3DPT,leading to enhanced osseointegration,anti-corrosion,and anti-fatigue performance.Molecular dynamics simulations revealed the ablation removal mechanism and the formation of nano cone-like structures.These findings were further supported by the in vivo studies,showing that the FS-treated implants had superior bone-implant contact and osseointegration.Hence,the one-step femtosecond laser method is regarded as a promising surface modification method for improving the functional performance of Ti-based orthopedic implants.展开更多
The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analy...The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter.展开更多
Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the emai...Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the email address from xingcai@stanford.edu to drtea1@wteao.com.Also,the corresponding author’s affiliation can be expanded.展开更多
In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteent...In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.展开更多
The micro-drama No Trivial Matters in Xicheng was awarded the title of Outstanding Online Micro-drama for 2024 by the National Radio and Television Administration.By depicting how community workers address people'...The micro-drama No Trivial Matters in Xicheng was awarded the title of Outstanding Online Micro-drama for 2024 by the National Radio and Television Administration.By depicting how community workers address people's livelihood concerns such as housing,transportation,and elderly care,the drama vividly showcases the warmth and responsibility in urban grassroots governance.展开更多
基金supported by the National Natural Science Foundation of China(22371121)the Natural Science Foundation of Jiangsu Province(BK20230772)the Fundamental Research Funds for Central Universities of China(020514380306)。
文摘Structure determination plays the most crucial role in the discovery of novel functional materials,because only by knowing the intrinsic structures can we accurately and completely understand their properties and applications.However,most new materials are obtained in polycrystalline form or even as mixtures with multiple phases when first synthesized,presenting significant challenges in their structure determination and phase elucidation.Fortunately,the developed three-dimensional electron diffraction(3DED/MicroED)has provided a promising solution to overcome these challenges.In this study,we have constructed a state-of-the-art 3DED/MicroED data acquisition equipment by integrating a hybrid-pixel detector with a script developed for Serial EM,and thus successfully developed an automated 3DED/MicroED method for the high-throughput structure determination.To demonstrate its effectiveness,a multiphase sample with complex porous structures is employed,showcasing that individual phases and their structures can be identified and determined,respectively.One remarkable finding is the identification of an impurity metal-organic framework(MOF)that is completely invisible to traditional powder X-ray diffraction in a supposedly“pure”commercial MOF sample.Additionally,our method also enables the atomic-resolution structure determination of flexible covalent organic framework materials,which are highly sensitive to electron beams.Moreover,a new microporous aluminoborate is discovered using this rapid structure determination method.These experimental results highlight the enormous potential of our 3DED/MicroED method in the field of new materials discovery,offering a powerful tool for the structure determination of polycrystalline functional materials.
基金supported by the National Natural Science Foundation of China(No.22371121)the Fundamental Research Funds for the Central Universities(No.0205-14380306).
文摘Porous materials have garnered significant attention in recent years.Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures.Single-crystal X-ray diffraction(SCXRD)has traditionally been the primary method for elucidating such structures,but it demands large,high-quality crystals,often exceeding 5μm in size.The growth of these crystals can be a time-consuming process,especially for one-and two-dimensional materials.To explore structures at the nanoscale,MicroED(microcrystal electron diffraction(ED))offers unprecedented insights into the realm of nanomaterials.This revolutionary technique enables researchers to uncover intricate details within nanoscale structures,promising to reshape our fundamental understanding of materials.In this review,we delve into the applications of MicroED in the study of various porous materials,including zeolites,metal-organic frameworks(MOFs),and covalent organic frameworks(COFs).We emphasize the pivotal role of MicroED in nanomaterial characterization,enabling precise crystallographic analysis and phase identification.
基金the National Key R&D Program of China(Project No.2022YFB4700100)National Natural Science Foundation of China(Grant Nos.61973298)+2 种基金Hong Kong Research Grants Council(GRF Project Number 11216120)the CAS-RGC Joint Laboratory Funding Scheme(Project Number JLFS/E-104/18)the Innovation Promotion Research Association of the Chinese Academy of Sciences(NO.2022199)。
文摘In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.
基金supported by Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2022QNRC001)the National Natural Science Foundation of China(No.52273053)the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.21CGA41)。
文摘Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always struggle to balance mechanical properties and thermal insulation,resulting in their inability to meet the demands for both washing resistance and personal protection.Herein,inspired by the natural spring-like structures of cucumber tendrils,a superelastic and washable micro/nanofibrous sponge(MNFS)based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation.By regulating the conductivity of polyvinylidene fluoride solution,multiple-jet ejection and multiple-stage whipping of jets are achieved,and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers,which are directly entangled to assemble MNFS.The resulting MNFS exhibits superelasticity that can withstand large tensile strain(200%),1000 cyclic tensile or compression deformations,and retain good resilience even in liquid nitrogen(-196℃).Furthermore,the MNFS shows efficient thermal insulation with low thermal conductivity(24.85 mW m^(-1)K^(-1)),close to the value of dry air,and remains structural stability even after cyclic washing.This work offers new possibilities for advanced fibrous sponges in transportation,environmental,and energy applications.
文摘Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.
基金financially supported by the China Scholarship Council(CSC)。
文摘Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO_(2)nanobubble technology to improve the performance of cement-fly ash-based backfill materials(CFB).The properties including fluidity,setting time,uniaxial compressive strength,elastic modulus,porosity,microstructure and CO_(2)storage performance were systematically studied through methods such as fluidity evaluation,time test,uniaxial compression test,mercury intrusion porosimetry(MIP),scanning electron microscopy-energy dispersive spectroscopy analysis(SEM-EDS),and thermogravimetric-differential thermogravimetric analysis(TG-DTG).The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO_(2)nanobubbles.When the fractal dimension reaches 2.65,the mass ratio of coarse and fine aggregates reaches the optimal balance,and the structural density is greatly improved at the same time.At this time,the uniaxial compressive strength and elastic modulus reach their peak values,with increases of up to 13.46%and 27.47%,respectively.CO_(2)nanobubbles enhance the material properties by promoting hydration reaction and carbonization.At the microscopic level,CO_(2)nanobubble water promotes the formation of C-S-H(hydrated calcium silicate),C-A-S-H(hydrated calcium aluminium silicate)gel and CaCO_(3),which is the main way to enhance the performance.Thermogravimetric studies have shown that when the fractal dimension is 2.65,the dehydration of hydration products and the decarbonization process of CaCO_(3)are most obvious,and CO_(2)nanobubble water promotes the carbonization reaction,making it surpass the natural state.The CO_(2)sequestration quality of cement-fly ash-based materials treated with CO_(2)nanobubble water at different fractal dimensions increased by 12.4wt%to 99.8wt%.The results not only provide scientific insights for the design and implementation of low-carbon filling materials,but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization.
基金supported by the National Key R&D Program of China(No.2023YFC3503902)the National Natural Science Foundation of China(Nos.82293681(82293680)and 82321004)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515120015 and 2021A1515111021)the Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000026)the Science and Technology Projects in Guangzhou(No.202102070001).
文摘[2+2]-Type cyclobutane derivatives comprise a large family of natural products with diverse molecular architectures.However,the structure elucidation of the cyclobutane ring,including its connection mode and stereochemistry,presents a significant challenge.Plumerubradins A-C(1-3),three novel iridoid glycoside[2+2]dimers featuring a highly functionalized cyclobutane core and multiple stereogenic centers,were isolated from the flowers of Plumeria rubra.Through biomimetic semisynthesis and chemical degradation of compounds 1-3,synthesis of phenylpropanoid-derived[2+2]dimers 7-10,combined with extensive spectroscopic analysis,single-crystal X-ray crystallography,and microcrystal electron diffraction experiments,the structures with absolute configurations of 1-3 were unequivocally elucidated.Furthermore,quantum mechanics-based^(1)H NMR iterative full spin analysis successfully established the correlations between the signal patterns of cyclobutane protons and the structural information of the cyclobutane ring in phenylpropanoid-derived[2+2]dimers,providing a diagnostic tool for the rapid structural elucidation of[2+2]-type cyclobutane derivatives.
基金funded by the National Natural Science Foundation of China(Grant No.06101213)the National Natural Science Foundation of China(Grant No.22105160).
文摘3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion.
基金supported by the National Natural Science Foundation of China(No.U21A2055),Natural Science Foundation of Tianjin of China(No.21JCQNJC01280)Tianjin Key R&D Program Beijing-Tianjin-Hebei Collaborative Innovation Project(No.22YFXTHZ00120).
文摘The poor surface conditions and osseointegration capacity of 3D printed Ti6Al4V implants(3DPT)significantly influence their performance as orthopedic and dental implants.In this work,we creatively introduce a one-step femtosecond laser treatment to improve the surface conditions and osteointegration.The surface characterization,mechanical properties,corrosion resistance,and biological responses were investigated.These results found that femtosecond laser eliminated defects like embedded powders and superficial cracks while forming the nano cones-like structures surface on 3DPT,leading to enhanced osseointegration,anti-corrosion,and anti-fatigue performance.Molecular dynamics simulations revealed the ablation removal mechanism and the formation of nano cone-like structures.These findings were further supported by the in vivo studies,showing that the FS-treated implants had superior bone-implant contact and osseointegration.Hence,the one-step femtosecond laser method is regarded as a promising surface modification method for improving the functional performance of Ti-based orthopedic implants.
基金funded by National Key R&D Program of China(Grant No.2023YFC3007001)Beijing Natural Science Foundation(Grant No.8244053)China Postdoctoral Science Foundation(Grant No.2024M754065).
文摘The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter.
文摘Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the email address from xingcai@stanford.edu to drtea1@wteao.com.Also,the corresponding author’s affiliation can be expanded.
文摘In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.
文摘The micro-drama No Trivial Matters in Xicheng was awarded the title of Outstanding Online Micro-drama for 2024 by the National Radio and Television Administration.By depicting how community workers address people's livelihood concerns such as housing,transportation,and elderly care,the drama vividly showcases the warmth and responsibility in urban grassroots governance.