The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printin...The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printing approaches are not suitable for such kind of tools due to the accuracy limitation.Multiphoton polymerization(MPP)-based micro/nanomanufacturing is a noncontact,high-precision molding technology that has been widely used in the micro/nano field is a promising tool for micro/nanoscale related precision medicine.In this article the fundamentals of MPP-based technology and the required materials in precision medicine are overviewed.The biomedical applications in various scenarios are then summarized and categorized as delivery systems,microtissue modeling,surgery,and diagnosis.Finally,the existing challenges and future perspectives on MPP-based micro/nanomanufacturing for precision medicine are discussed,focusing on material design,process optimization,and practical applications to overcome its current limitations.展开更多
Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of...Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of functions including sensing,actuation and energy harvesting,promote flexible electronics to be widely used in healthcare,robotics,Internet of Things,and so on.Micro/nanomanufacturing is the key technology to realize flexible electronics.Through micro/nanomanufacturing,various micro/nano-scale electronic components such as transistors and sensors can be precisely fabricated on flexible substrates,endowing flexible electronics with excellent performance.On the other hand,the development of flexible electronics also provides new challenges for micro/nanomanufacturing,due to the new flexible materials and device morphology.Currently,flexible electronics and micro/nanomanufacturing have attracted great at-tention from researchers around the world.Scientists explore new materials and techniques to further expand the applications of flexible electronics.On this basis,we have organized a special topic on“Flexible Electronics and Micro/Nanomanufacturing”in National Science Open(NSO)to discuss the development of flexible electronics.The topic focuses on key issues in the design and manufacturing of flexible electronics.We have invited nine scientists from different fields to present their latest research findings and prospective analyses of flexible electronics systematically.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(F...Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.展开更多
Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propuls...Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels,exhibiting excellent biocompatibility and significant potential for application in the biomedical field.Compared with H_(2)O_(2),which may cause oxidative damage to the body,urea exhibits superior biosafety characteristics.Presently,urease-powered MNMs(UMNMs)have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers.In this review,we present the latest advancements in the biomedical field of UMNMs,primarily focusing on:1)diverse materials used for constructing the fundamental framework of motors;2)control of motor movement through the regulation of enzymatic reaction rates;and 3)research directions for the clinical application of motors,including in vivo imaging,biomarker detection,cancer treatment,optical therapy,overcoming biological barriers,antibacterial interventions,antithrombotic strategies,and gastric disease management.Despite showing immense potential in biomedical applications,there are still several challenges impeding its practical implementation,such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.展开更多
基金the National Natural Science Foundation of China(52275294)the National Key Research and Development Program of China(2018YFA0703000).
文摘The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printing approaches are not suitable for such kind of tools due to the accuracy limitation.Multiphoton polymerization(MPP)-based micro/nanomanufacturing is a noncontact,high-precision molding technology that has been widely used in the micro/nano field is a promising tool for micro/nanoscale related precision medicine.In this article the fundamentals of MPP-based technology and the required materials in precision medicine are overviewed.The biomedical applications in various scenarios are then summarized and categorized as delivery systems,microtissue modeling,surgery,and diagnosis.Finally,the existing challenges and future perspectives on MPP-based micro/nanomanufacturing for precision medicine are discussed,focusing on material design,process optimization,and practical applications to overcome its current limitations.
文摘Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of functions including sensing,actuation and energy harvesting,promote flexible electronics to be widely used in healthcare,robotics,Internet of Things,and so on.Micro/nanomanufacturing is the key technology to realize flexible electronics.Through micro/nanomanufacturing,various micro/nano-scale electronic components such as transistors and sensors can be precisely fabricated on flexible substrates,endowing flexible electronics with excellent performance.On the other hand,the development of flexible electronics also provides new challenges for micro/nanomanufacturing,due to the new flexible materials and device morphology.Currently,flexible electronics and micro/nanomanufacturing have attracted great at-tention from researchers around the world.Scientists explore new materials and techniques to further expand the applications of flexible electronics.On this basis,we have organized a special topic on“Flexible Electronics and Micro/Nanomanufacturing”in National Science Open(NSO)to discuss the development of flexible electronics.The topic focuses on key issues in the design and manufacturing of flexible electronics.We have invited nine scientists from different fields to present their latest research findings and prospective analyses of flexible electronics systematically.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.
基金supported by the National Natural Science Foundation of China(grant numbers 52305321 and 62273246)The Natural Science Foundation of Jiangsu Province(BK20230496)+3 种基金China Postdoctoral Science Foundation Funded Project(2023M732536 and 2024T170630)Jiangsu Province Excellence Postdoctoral Program(2023ZB218)The National Key R&D Program of China(2022YFB4702202)The Jiangsu Provincial Key Technology R&D Program(BE2021009-02).
文摘Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.
基金supported by the National Natural Science Foundation of China(Grant No.:82372102).
文摘Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels,exhibiting excellent biocompatibility and significant potential for application in the biomedical field.Compared with H_(2)O_(2),which may cause oxidative damage to the body,urea exhibits superior biosafety characteristics.Presently,urease-powered MNMs(UMNMs)have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers.In this review,we present the latest advancements in the biomedical field of UMNMs,primarily focusing on:1)diverse materials used for constructing the fundamental framework of motors;2)control of motor movement through the regulation of enzymatic reaction rates;and 3)research directions for the clinical application of motors,including in vivo imaging,biomarker detection,cancer treatment,optical therapy,overcoming biological barriers,antibacterial interventions,antithrombotic strategies,and gastric disease management.Despite showing immense potential in biomedical applications,there are still several challenges impeding its practical implementation,such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.