High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase co...High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.展开更多
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to ethylene(C_(2)H_(4))represents a promising approach to reducing CO_(2)emissions and producing high-value chemicals.The ethylene productivity is always limited by t...Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to ethylene(C_(2)H_(4))represents a promising approach to reducing CO_(2)emissions and producing high-value chemicals.The ethylene productivity is always limited by the slow reaction kinetics and the high-performance catalysts are significantly desired.Many efforts have been made to develop a catalyst to activate CO_(2)molecules.However,as another reactant,H2O activation does not receive the attention it deserves.In particular,slow H2O dissociation kinetics limit the rate of proton supply,severely impairing the production of C_(2)H_(4).Here,we designed a MgO-modified CuO catalyst(MgO/CuO),which can promote H2O dissociation and enhance CO_(2)adsorption at the same time to realize the efficient ethylene production.The optimal catalyst exhibits a Faraday efficiency for C_(2)H_(4)reached 54.4%at−1.4 V vs.RHE in an H-cell,which is 1.4 times that of pure CuO(37.9%),and it was further enhanced to a 56.7%in a flow cell,with a high current density of up to 535.9 mA cm−2 at−1.0 V vs.RHE.Experimental and theoretical calculations show that MgO/CuO plays a bifunctional role in the CO_(2)RR,which facilitates the adsorption and activation of CO_(2)by CuO and simultaneously accelerates H2O dissociation by MgO doping.The in situ XRD experiments demonstrate that the introduction of MgO protects CuO active phase to avoid overreduction and preserves the active centers for CO_(2)RR.In combination with in situ FTIR and DFT calculations,the protonation process from*CO to*COH and asymmetric C–C coupling step are promoted by the enhanced water activation and proton coupling on MgO/CuO.This work provides new insights into the CO_(2)and H_(2)O coactivation mechanism in CO_(2)RR and a potential universal strategy to design ethylene production electrocatalysts.展开更多
To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that th...To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets.展开更多
The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for ...The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for lower costs and higher economic benefits in high-carbon ferrochrome production process.This study calculated the activity of CrO_(x)in slag and investigated the distribution behavior of Cr between slag and alloy.Theω(MgO)/ω(Al_(2)O_(3))was 1.0,and the w(CaO)/w(SiO_(2))was from 0.2 to 0.6 in this study.The calculation and experimental results showed that the main phases of the slag were chrome-containing spinel,magnesium-aluminum spinel,olivine and melilite.The content of spinel in slag decreased with the increasing w(CaO)/w(SiO_(2)),and the w(CrO_(x))in spinel also reduced,but the content of melilite increased.The distribution ratio of Cr between slag and alloy decreased with the increase of slag basicity at 1600℃,meansning that increasing the w(CaO)/w(SiO_(2))of slag can improve the recovery of Cr in chromite smelting process.展开更多
文摘High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2099,U22A20425,and 22208377)Natural Science Foundation of Shandong Province(ZR2021QE062)Fundamental Research Funds for the Central Universities,Ocean University of China(grant number 202364004)。
文摘Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to ethylene(C_(2)H_(4))represents a promising approach to reducing CO_(2)emissions and producing high-value chemicals.The ethylene productivity is always limited by the slow reaction kinetics and the high-performance catalysts are significantly desired.Many efforts have been made to develop a catalyst to activate CO_(2)molecules.However,as another reactant,H2O activation does not receive the attention it deserves.In particular,slow H2O dissociation kinetics limit the rate of proton supply,severely impairing the production of C_(2)H_(4).Here,we designed a MgO-modified CuO catalyst(MgO/CuO),which can promote H2O dissociation and enhance CO_(2)adsorption at the same time to realize the efficient ethylene production.The optimal catalyst exhibits a Faraday efficiency for C_(2)H_(4)reached 54.4%at−1.4 V vs.RHE in an H-cell,which is 1.4 times that of pure CuO(37.9%),and it was further enhanced to a 56.7%in a flow cell,with a high current density of up to 535.9 mA cm−2 at−1.0 V vs.RHE.Experimental and theoretical calculations show that MgO/CuO plays a bifunctional role in the CO_(2)RR,which facilitates the adsorption and activation of CO_(2)by CuO and simultaneously accelerates H2O dissociation by MgO doping.The in situ XRD experiments demonstrate that the introduction of MgO protects CuO active phase to avoid overreduction and preserves the active centers for CO_(2)RR.In combination with in situ FTIR and DFT calculations,the protonation process from*CO to*COH and asymmetric C–C coupling step are promoted by the enhanced water activation and proton coupling on MgO/CuO.This work provides new insights into the CO_(2)and H_(2)O coactivation mechanism in CO_(2)RR and a potential universal strategy to design ethylene production electrocatalysts.
基金support from the National Natural Science Foundation of China(52174290).
文摘To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets.
基金Project(2023XQLH055)supported by Central South University Graduate Research Innovation Project(University-Enterprise Joint Project),China。
文摘The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for lower costs and higher economic benefits in high-carbon ferrochrome production process.This study calculated the activity of CrO_(x)in slag and investigated the distribution behavior of Cr between slag and alloy.Theω(MgO)/ω(Al_(2)O_(3))was 1.0,and the w(CaO)/w(SiO_(2))was from 0.2 to 0.6 in this study.The calculation and experimental results showed that the main phases of the slag were chrome-containing spinel,magnesium-aluminum spinel,olivine and melilite.The content of spinel in slag decreased with the increasing w(CaO)/w(SiO_(2)),and the w(CrO_(x))in spinel also reduced,but the content of melilite increased.The distribution ratio of Cr between slag and alloy decreased with the increase of slag basicity at 1600℃,meansning that increasing the w(CaO)/w(SiO_(2))of slag can improve the recovery of Cr in chromite smelting process.