Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model ...Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.展开更多
The genus Falsomesosella Pic,1925 currently includes two subgenera,with 36 species/subspecies described in the nominate subgenus(Tavakilian&Chevillotte,2021).Among them,10 species were recorded from China(Lin&...The genus Falsomesosella Pic,1925 currently includes two subgenera,with 36 species/subspecies described in the nominate subgenus(Tavakilian&Chevillotte,2021).Among them,10 species were recorded from China(Lin&Tavakilian,2019).Recently,Lazarev(2021)described the 37 th species from Shaanxi Province of China.However,it was based on four specimens of Falsomesosella truncatipennis Pic,1944,herein we propose the new synonym.展开更多
0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of h...0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of hydrocarbon source rocks(Jiang et al.,2024;Zhang et al.,2023;Huang et al.,2019;Yang et al.,2017;Jia et al.,2003;Hendrix,2000).展开更多
Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating...Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating bone integration and ensuring their suitability for bone implant purposes,ultimately contributing to long-term implant success.The effect of apatite deposition on bioactivity and cell behavior of TiO_(2)scaffolds was studied.Scaffolds were soaked in 10SBF for different durations to form HAP layer on their surface.The results proved the development of a hydroxyapatite film resembling the mineral composition of bone Extracellular Matrix(ECM)on the TiO_(2)scaffolds.The XRD test findings showed the presence of hydroxyapatite layer similar to bone at the depth of 10 nm.A decrease in the specific surface area(18.913 m^(2)g^(−1)),the total pore volume(0.045172 cm^(3)g^(−1)(at p/p0=0.990)),and the mean pore diameter(9.5537 nm),were observed by BET analysis which confirmed the formation of the apatite layer.It was found that titania scaffolds with HAP coating promoted human osteosarcoma bone cell(MG63)cell attachment and growth.It seems that immersing the scaffolds in 10SBF to form HAP coating before utilizing them for bone tissue engineering applications might be a good strategy to promote bioactivity,cell attachment,and implant fixation.展开更多
文摘Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.
文摘The genus Falsomesosella Pic,1925 currently includes two subgenera,with 36 species/subspecies described in the nominate subgenus(Tavakilian&Chevillotte,2021).Among them,10 species were recorded from China(Lin&Tavakilian,2019).Recently,Lazarev(2021)described the 37 th species from Shaanxi Province of China.However,it was based on four specimens of Falsomesosella truncatipennis Pic,1944,herein we propose the new synonym.
基金supported by the National Key Research and Development Project(No.2019YFA0708601)the National Natural Science Foundation of China(No.4231101056)the Chinese Academy of Geological Sciences Basic Research Fund(No.JKYZD202402)。
文摘0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of hydrocarbon source rocks(Jiang et al.,2024;Zhang et al.,2023;Huang et al.,2019;Yang et al.,2017;Jia et al.,2003;Hendrix,2000).
文摘Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating bone integration and ensuring their suitability for bone implant purposes,ultimately contributing to long-term implant success.The effect of apatite deposition on bioactivity and cell behavior of TiO_(2)scaffolds was studied.Scaffolds were soaked in 10SBF for different durations to form HAP layer on their surface.The results proved the development of a hydroxyapatite film resembling the mineral composition of bone Extracellular Matrix(ECM)on the TiO_(2)scaffolds.The XRD test findings showed the presence of hydroxyapatite layer similar to bone at the depth of 10 nm.A decrease in the specific surface area(18.913 m^(2)g^(−1)),the total pore volume(0.045172 cm^(3)g^(−1)(at p/p0=0.990)),and the mean pore diameter(9.5537 nm),were observed by BET analysis which confirmed the formation of the apatite layer.It was found that titania scaffolds with HAP coating promoted human osteosarcoma bone cell(MG63)cell attachment and growth.It seems that immersing the scaffolds in 10SBF to form HAP coating before utilizing them for bone tissue engineering applications might be a good strategy to promote bioactivity,cell attachment,and implant fixation.