This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix i...This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.展开更多
This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the info...This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.展开更多
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield n...In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.展开更多
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The ...Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.展开更多
In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the soluti...In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper...Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.展开更多
Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic c...Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
In this paper,we develop a distributed solver for a group of strict(non-strict)linear matrix inequalities over a multi-agent network,where each agent only knows one inequality,and all agents co-operate to reach a cons...In this paper,we develop a distributed solver for a group of strict(non-strict)linear matrix inequalities over a multi-agent network,where each agent only knows one inequality,and all agents co-operate to reach a consensus solution in the intersection of all the feasible regions.The formulation is transformed into a distributed optimization problem by introducing slack variables and consensus constraints.Then,by the primal–dual methods,a distributed algorithm is proposed with the help of projection operators and derivative feedback.Finally,the convergence of the algorithm is analyzed,followed by illustrative simulations.展开更多
This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is ...This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.展开更多
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60474013)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050424002)the Doctoral Foundation of Shandong Province (No. 2004BS01010)
文摘This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.
基金supported by the Science Foundation of the Department of Science and Technology,New Delhi,India (Grant No.SR/S4/MS:485/07)
文摘This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026), the Science Foundation of Southern Yangtze University, China.
文摘In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
基金supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011
文摘Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
基金This work was supported by the Basic Program in Natural Sciences, Vietnam and Thai Research Fund Grant, Thailand
文摘In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金This work was supported by the Doctor Subject Foundation of China (No. 2000053303)
文摘Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.52372371)the Science Center for Gas Turbine Project,China(Nos.P2022-B-V-002-001,P2022-B-V-001-001).
文摘Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the National Natural Science Foundation of China(Nos.61733018,62073035)。
文摘In this paper,we develop a distributed solver for a group of strict(non-strict)linear matrix inequalities over a multi-agent network,where each agent only knows one inequality,and all agents co-operate to reach a consensus solution in the intersection of all the feasible regions.The formulation is transformed into a distributed optimization problem by introducing slack variables and consensus constraints.Then,by the primal–dual methods,a distributed algorithm is proposed with the help of projection operators and derivative feedback.Finally,the convergence of the algorithm is analyzed,followed by illustrative simulations.
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
文摘This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.