Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ...Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ductility of Fe–Ga alloy. However, the im-pact of trace Tb doping on the microstructure and magnetostriction of Fe–Ga thin sheets is an open question. In this paper, the effects oftrace Tb addition on the secondary recrystallization and magnetostriction of Fe–Ga thin sheets are systematically studied by comparing thecharacteristics evolution of precipitation, texture, and nanoinclusions. The results indicate that trace Tb addition accelerates the secondaryrecrystallization of Goss texture due to the combined action of the bimodal size distributed precipitates, smaller grains, and more HEGBsin primary recrystallization. After quenching at 900℃, the magnetostriction value in 0.07 at %Tb-doped Fe_(81)Ga_(19) thin sheets increases by 30% to that of Fe_(81)Ga_(19) thin sheets. The increase in magnetostriction is attributed to the decrease in the number of Tb-rich precipitates andthe higher density of the nanometer-sized modified-D0_(3) inclusions induced by the dissolving of trace Tb elements after quenching. Theseresults demonstrate a simple and efficient approach for preparing Fe–Ga thin sheets with a large magnetostrictive coefficient by a combin-ation of trace RE element addition and conventional rolling method.展开更多
Solid-state precipitation is an effective strategy for tuning the mechanical and functional properties of ad-vanced alloys.Structure design and modification necessitate good knowledge of the kinetic evolution of preci...Solid-state precipitation is an effective strategy for tuning the mechanical and functional properties of ad-vanced alloys.Structure design and modification necessitate good knowledge of the kinetic evolution of precipitates during fabrication,which is strongly correlated with defect concentration.For Fe-Ga alloys,giant magnetostriction can be induced by the precipitation of the nanoscale tetragonal L60 phase.By introducing quenched-in vacancies,we significantly enhance the magnetostriction of the aged Fe81Ga19 polycrystalline alloys to~305 ppm,which is close to the level of single crystals.Although vacancies were found to facilitate the generation of the L60 phase,their impact on the precipitation mechanism and kinetics has yet to be revealed.This study combined transmission electron microscopy(TEM)and time-resolved small-angle neutron scattering(SANS)to investigate the precipitation of the L60 phase during the isothermal aging at 350 and 400℃,respectively.The evolution of L60 nanophase in morphology and number density in as-cast(AC)and liquid nitrogen quenched(LN)Fe81Ga19 alloys with aging time were quantitatively compared.Interestingly,the nucleation of the L60 phase proceeds progressively in AC while suddenly in LN specimens,indicating the homogenous to heterogeneous mechanism switching in-duced by concentrated vacancies.Moreover,excess vacancies can change the shape of nanoprecipitates and significantly accelerate the growth and coarsening kinetics.The magnetostrictive coefficient is opti-mized when the size(long-axis)of L60 precipitates lies between 100 and 110Åwith a number density between 3.2-4.3×10-7Å-3.Insight from this study validates the feasibility of achieving high magnetoe-lastic properties through precise manipulation of the nanostructure.展开更多
We report the magnetostrictive performance of the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites.Measurement of M?ssbauer spectra and the XRD results indicate that the easy magnetic direction of the Nd_(0.2)Tb_(0....We report the magnetostrictive performance of the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites.Measurement of M?ssbauer spectra and the XRD results indicate that the easy magnetic direction of the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)compound is along<111>direction with spontaneous magnetostrictionλ111 of1900 ppm.The<111>-oriented Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites with particle volume fractions of20 vol%-55 vol%were prepared.Magnetization measurements demonstrate that the composite is highly anisotropic.The raw material cost of Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)is about 85%of that of the Terfenol-D(Tb_(0.3)Dy_(0.7)Fe_(2))composition.Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites possess comparable magnetostriction with those composites made of Tb_(0.3)Dy_(0.7)Fe_(2)particles.At room temperature,the magnetostrictionλ_Ⅱof the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composite reaches 420 ppm at a low field of 80 kA/m and about1000 ppm at 239 kA/m.In addition,the composite exhibits a large saturation magnetostrictionλ_Ⅱover1200 ppm from 300 to 100 K,suggesting its potential applications as a low-cost magnetostrictive material in a wide temperature range.Therefore,the current study offers an opportunity to widen the operating temperature range of the magnetostrictive composite.展开更多
The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure ...The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure and the compressive stress effect of magnetostriction is discussed.展开更多
Rapidly solidified Fe100-xGax (x=16-20) alloy rods were prepared by induction melting and copper mold casting under the protection of inert gases. The optical microscopy observation shows that the large and elongate...Rapidly solidified Fe100-xGax (x=16-20) alloy rods were prepared by induction melting and copper mold casting under the protection of inert gases. The optical microscopy observation shows that the large and elongated columnar grains grow along the radial direction, which is parallel to the temperature gradient direction. The preferred orientation texture along the axial direction of the rod was detected by XRD. With the increase of Ga content, the saturation magnetization (Ms) of the alloys decreases distinctly and the dynamic response in low magnetic field increases drastically, the maximum longitudinal saturation magnetostriction for as-cast Fe82Ga18 alloy rods is 92×10-6 under an applied magnetic field strength of 30 kA/m. The large magnetostriction of Fe100-xGax alloys is attributed to the rapidly solidified disordered A2 phase and the high concentration of short range order of Ga atom clusters, which are arranged in the direction and finally trigger the formation of modified-DO3 structure, just as shown by the split of the (200) diffraction peak. Ordered DO3 phase is not conducive to the magnetostriction.展开更多
A set of stacked ribbons with the composition of Fe77Ga23 were prepared with different wheel velocities of 7 m/s, 12.5 m/s and 25 m/s(named as S7, S12.5 and S25, respectively). High resolution X-ray diffraction patt...A set of stacked ribbons with the composition of Fe77Ga23 were prepared with different wheel velocities of 7 m/s, 12.5 m/s and 25 m/s(named as S7, S12.5 and S25, respectively). High resolution X-ray diffraction patterns of these ribbons show that all the ribbons present the disordered A2 structure, whereas an additional modified-DO3 phase is detected in S12.5 and S25. S25 has stronger(100) texture than other two samples. Ga K-edge extended X-ray absorption fine structure results indicate that both bond distance and the number of Ga atoms in the second neighbor shell around Ga decrease with increasing wheel velocity. No Ga cluster is detected in the studied ribbons. A short-range ordering Ga-rich phase and large local strain have no obvious influence on magnetostriction of S7. It is believed that both the(100) texture and the additional modified-DO3 phase play a positive role in magnetostrictive properties of Fe77Ga23 ribbons.展开更多
In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation ...In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation was fabricated using zone-melting unidirectional solidification technique, followed by annealing in a transverse magnetic field of 366 kA/m. The crystal orientation and bi-phase solidified morphology can be retained after magnetic annealing. A high magnetostriction of 1.508×10^-3 was obtained in the magnetically annealed specimen, which is 25.2% larger than the untreated one. Simultaneously, the magnetostriction hysteresis width is slightly enlarged from 4.45 to 6.36 kA/m, which is still much lower than that of the Ho-free Tbo.3Dy0.TFe2 alloy. The additional anisotropy which is induced by magnetic annealing, as reflected by the magnetic hysteresis loops, is responsible for the enhancement of magnetostrictive performance.展开更多
Magnetostriction at room temperature under various conditions of compressive prestress and applied fields in Tb yDy 1-y (Fe 1-x T x) 2 (T=Al,Mn) twin-free single crystals were investigated. The substitutio...Magnetostriction at room temperature under various conditions of compressive prestress and applied fields in Tb yDy 1-y (Fe 1-x T x) 2 (T=Al,Mn) twin-free single crystals were investigated. The substitution of Al or Mn for Fe lowers the magnetostriction un-der ordinary temperature and pressure, but it also decreases the saturation field, which enables these materials with potential benefits for applications.展开更多
In order to demonstrate that light rare-earth(RE)dopants with strong magnetocrystalline anisotropy, whose net moment couples are antiparallel to those of iron, can also induce giant magnetostriction in Gafenol, a ligh...In order to demonstrate that light rare-earth(RE)dopants with strong magnetocrystalline anisotropy, whose net moment couples are antiparallel to those of iron, can also induce giant magnetostriction in Gafenol, a light RE element Sm was selected as the third element to dope into FeGaalloy.(FeGa)Sm(0≤x≤0.42) ribbons were prepared by melt spinning. The increase of the lattice parameters and saturation magnetization indicates that some Sm atoms enter the A2 matrix substitutionally. Doping the FeGaribbons with the light RE Sm element drastically improves the magnetostriction. Perpendicular magnetostriction value of λ=-5*10is achieved in(FeGa)Sm. It is confirmed that the stronger local magnetocrystalline anisotropy induces larger enhanced magnetostrictions. The greatly enhanced magnetostriction is somehow related to the local microstrains induced by the RE dopants. It is likely that the RE-induced defects in the(FeGa)REribbons function in the similar way as the Ga–Ga pair defects in the undoped Fe–Ga alloys.展开更多
As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys(based on Tb0.27-0.30Dy0.73-0.70Fe1.9-2Laves compound) can be applied in many engineering fields, such as sonar transducer systems, sensors, and micro-ac...As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys(based on Tb0.27-0.30Dy0.73-0.70Fe1.9-2Laves compound) can be applied in many engineering fields, such as sonar transducer systems, sensors, and micro-actuators. However, the cost of the rare earth elements Tb and Dy is too high to be widely applied for the materials. Nowadays, there are two different ways to substitute for these alloying elements. One is to partially replace Tb or Dy by cheaper rare earth elements, such as Pr, Nd, Sm and Ho; and the other is to use non-rare earth elements, such as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe to form single MgCu_2-type Laves phase and a certain amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of the alloy. This paper systemically introduces the development, the fabrication methods and the corresponding preferred growth directions of Tb-Dy-Fe alloys. In addition, the effects of alloying elements and heat treatment on magnetostrictive and mechanical properties of Tb-Dy-Fe alloys are also reviewed, respectively. Finally, some possible applications of Tb-Dy-Fe alloys are presented.展开更多
The crystal structure,microstructure and the magnetostriction of Fe83Ga17Dyx(x=0,0.2,0.4,0.6) series alloys were studied.The results showed that the influence of the Dy on the crystal structure of the alloy was very s...The crystal structure,microstructure and the magnetostriction of Fe83Ga17Dyx(x=0,0.2,0.4,0.6) series alloys were studied.The results showed that the influence of the Dy on the crystal structure of the alloy was very small but the effect on the microstructure was significant when different contents of Dy were added into the Fe83Ga17 alloy,respectively.Meanwhile,the magnetostriction of Fe83Ga17Dy0.2 alloy was greatly enhanced,the magnetostriction λ value reached 300×10-6 at 400(kA/m) magnetic field.展开更多
Fe80Ga20-xAlx (x = 0, 6, 9, 14) ingots were prepared from high purity elements using a vacuum induction system. X-ray diffraction patterns show that the alloys are A2 disordered structures. The influence of the part...Fe80Ga20-xAlx (x = 0, 6, 9, 14) ingots were prepared from high purity elements using a vacuum induction system. X-ray diffraction patterns show that the alloys are A2 disordered structures. The influence of the partial substitution of Ga in Fe-Ga alloys with A1 on their magnetostrictive properties was investigated, and the effects of different heat treatment conditions on the magnetostriction and microstructure of the alloy rods were also examined. The saturation magnetostriction value of FesoGa2o can reach to 240 x 10-6 under a compressive stress of 20 MPa. The Fe80GallA19 alloy has many good properties, such as low hysteresis, high linearity of the magnetostriction curve, and low saturated magnetic field, which make it a potential candidate for magnetostrictive actuator and transducer applications. It is found that subgrains have little influence on the magnetostriction of Fe-Ga alloys.展开更多
The microstructure,in-plane anisotropy,and magnetic properties of Fe-Ga thin films were investigated by X-ray diffraction analysis,vibrating sample magnetometer,and capacitive cantilever method.The in-plane induced an...The microstructure,in-plane anisotropy,and magnetic properties of Fe-Ga thin films were investigated by X-ray diffraction analysis,vibrating sample magnetometer,and capacitive cantilever method.The in-plane induced anisotropy is well formed by the applied magnetic field during sputtering,and the anisotropy field Hk decreases with the sputtering power increasing.The coercivity of Fe-Ga thin films decreases with increasing power when the sputtering power is less than 60 W and increases when the power is larger than 60 W.The magnetostriction of the thin films reaches 66 × 10-6 at the sputtering power of 60 W.Excellent Fe-Ga films,which exhibit good field sensitivity,low coercivity and high magnetostriction,have been fabricated at the power of 60 W,and they can be used as the materials of magnetostrictive transducers.展开更多
The intrinsic brittleness of the TbDyFe alloy significantly decreases its mach inability and applications.This paper aims to improve the toughness of TbDyFe alloy by adding Cu. Various alloys of the type(Tb_(0.3)Dy_(0...The intrinsic brittleness of the TbDyFe alloy significantly decreases its mach inability and applications.This paper aims to improve the toughness of TbDyFe alloy by adding Cu. Various alloys of the type(Tb_(0.3)Dy_(0.7))_(0.37)Fe_(0.63-χ)Cu_χ(χ=0, 0,01.0.03, 0.05, 0.08, 0.1) were fabricated by an arc melting furnace under a high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance were studied systematically. The results show that the (Tb,Dy)Cu phase forms in these alloys upon the addition of Cu. Correspondingly, their toughness improves, attributed to the formation of a (Tb,Dy)Cu phase. Compared to the Cu-free alloy, the fracture toughness (Kic) increases 2-3 times with increasing Cu content. However, the magnetostriction performance of these alloys declines with Cu addition, due to the low-magnetic performance of the (Tb,Dy)Cu phase at room temperature. Compared with other alloys, the alloy with the addition of 1at%Cu shows the best compromise between the saturation magnetostriction and fracture toughness.展开更多
The C15 Laves phase with composition Tb0.2Pr0.8(Fe0.4Co0.6)1.93 was synthesized by mechanical alloying (MA) and subsequent annealing process. The structure and magnetic properties of Tb0.2Pr0.8(Fe0.4Co0.6)1.93 w...The C15 Laves phase with composition Tb0.2Pr0.8(Fe0.4Co0.6)1.93 was synthesized by mechanical alloying (MA) and subsequent annealing process. The structure and magnetic properties of Tb0.2Pr0.8(Fe0.4Co0.6)1.93 were investigated by means of X-ray diffraction (XRD), a vibrating sample magnetometer, and a standard strain technique. The effect of annealing on the structure and magnetic properties was studied. The analysis of XRD shows that the high Pr-content Tb0.2Pr0.8(Fe0.4Co0.6)1.93 alloy with the single phase of MgCu2-type structure can be successfully synthesized by MA method. The sample annealed at 450℃ is found to have a coercivity of 196 kA/m at room temperature. An epoxy/Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite was produced by a cold isostatic pressing technique. A large magnetostriction of 400 ppm, at an applied magnetic field of 800 kA/m, was found for the composite. The epoxy-bonded Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite combines a high magnetostriction with a significant coercivitv, which is a oromising magnetostrictive material.展开更多
Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of t...Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.展开更多
<110> oriented Tb0.27Dy0.73Fe1.95 alloys were studied under different applied compressive prestresses.Larger saturation magnetostriction by 500×10-6 is obtained for the sample under 5 MPa than that under no...<110> oriented Tb0.27Dy0.73Fe1.95 alloys were studied under different applied compressive prestresses.Larger saturation magnetostriction by 500×10-6 is obtained for the sample under 5 MPa than that under no applied stress.To understand the effect of prestress on the magnetostrictive coefficient,differential magnetostrictive coefficient,relative permeability and coercive force were studied in detail.The results show that the maximum differential magnetostrictive coefficient is about 37 x 10-9 m·A-1,about two times that without stress.In addition,the saturation magnetostriction coefficient increases gradually with the stress increasing,while the maximum differential magnetostrictive coefficient decreases.The saturation inductions under different stresses are similar to a value of about 1.1 T.The relative permeability decreases with stress increasing.展开更多
Mechanical alloying (MA) and subsequent solid sintering process was used to prepare the Nd-containing magnetostrictive Tb0.4Nd0.6(Fe0.8Co0.2)1.90 alloy. The structure, thermal stability and phase transformation were i...Mechanical alloying (MA) and subsequent solid sintering process was used to prepare the Nd-containing magnetostrictive Tb0.4Nd0.6(Fe0.8Co0.2)1.90 alloy. The structure, thermal stability and phase transformation were investigated as functions of composition, milling process and annealing temperature. An amorphous phase was formed by high-energy ball milling for 5 h with the ball-to-powder weight ratio of 20:1, which crystallized into MgCu2-type and PuNi3-type crystalline structure with different annealing temperatures. The magnetoelastic properties were investigated by means of a standard strain technique. The high Nd-content (Tb,Nd)(Fe,Co)2 Laves phase for the composition Tb0.4Nd0.6(Fe0.8Co0.2)1.90 was synthesized by MA process plus annealing at 500 ℃ for 30 min.展开更多
The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe...The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe2 - z(0 27 ≤x ≤0 3 ,0 ≤z ≤0 1) rod are measured. Somecoupling problems with mechanicalstress and electromagnetic field such as flux leakage in magnetic path are discussed. The comparing calculated with tested resultsshowsthe accuracyof measurementand thesimplification of model.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
基金financially supported by the National Natural Science Foundation of China (No. 52004164)the Funding Program of Science and Technology Department of Liaoning Province, China (No. 2023-MSLH-249)the Funding Program of Education Department of Liaoning P rovince, China (No. LMGD2023018)。
文摘Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ductility of Fe–Ga alloy. However, the im-pact of trace Tb doping on the microstructure and magnetostriction of Fe–Ga thin sheets is an open question. In this paper, the effects oftrace Tb addition on the secondary recrystallization and magnetostriction of Fe–Ga thin sheets are systematically studied by comparing thecharacteristics evolution of precipitation, texture, and nanoinclusions. The results indicate that trace Tb addition accelerates the secondaryrecrystallization of Goss texture due to the combined action of the bimodal size distributed precipitates, smaller grains, and more HEGBsin primary recrystallization. After quenching at 900℃, the magnetostriction value in 0.07 at %Tb-doped Fe_(81)Ga_(19) thin sheets increases by 30% to that of Fe_(81)Ga_(19) thin sheets. The increase in magnetostriction is attributed to the decrease in the number of Tb-rich precipitates andthe higher density of the nanometer-sized modified-D0_(3) inclusions induced by the dissolving of trace Tb elements after quenching. Theseresults demonstrate a simple and efficient approach for preparing Fe–Ga thin sheets with a large magnetostrictive coefficient by a combin-ation of trace RE element addition and conventional rolling method.
基金supported by the National Natural Science Foundation of China(Grant No.12275154)the Guangdong Basic and Applied Basic Research Foundation,China(Project No.2021B1515140028)+1 种基金the Youth Innovation Promotion Association,CAS(No.2020010)the National Key Research and Development Program of China,grant number(Nos.2021YFA1600701 and 2021YFB3501201).
文摘Solid-state precipitation is an effective strategy for tuning the mechanical and functional properties of ad-vanced alloys.Structure design and modification necessitate good knowledge of the kinetic evolution of precipitates during fabrication,which is strongly correlated with defect concentration.For Fe-Ga alloys,giant magnetostriction can be induced by the precipitation of the nanoscale tetragonal L60 phase.By introducing quenched-in vacancies,we significantly enhance the magnetostriction of the aged Fe81Ga19 polycrystalline alloys to~305 ppm,which is close to the level of single crystals.Although vacancies were found to facilitate the generation of the L60 phase,their impact on the precipitation mechanism and kinetics has yet to be revealed.This study combined transmission electron microscopy(TEM)and time-resolved small-angle neutron scattering(SANS)to investigate the precipitation of the L60 phase during the isothermal aging at 350 and 400℃,respectively.The evolution of L60 nanophase in morphology and number density in as-cast(AC)and liquid nitrogen quenched(LN)Fe81Ga19 alloys with aging time were quantitatively compared.Interestingly,the nucleation of the L60 phase proceeds progressively in AC while suddenly in LN specimens,indicating the homogenous to heterogeneous mechanism switching in-duced by concentrated vacancies.Moreover,excess vacancies can change the shape of nanoprecipitates and significantly accelerate the growth and coarsening kinetics.The magnetostrictive coefficient is opti-mized when the size(long-axis)of L60 precipitates lies between 100 and 110Åwith a number density between 3.2-4.3×10-7Å-3.Insight from this study validates the feasibility of achieving high magnetoe-lastic properties through precise manipulation of the nanostructure.
基金Project supported by the National Natural Science Foundation of China(11475086,51671102)Project-based Courses in NUAA(20210849A)。
文摘We report the magnetostrictive performance of the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites.Measurement of M?ssbauer spectra and the XRD results indicate that the easy magnetic direction of the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)compound is along<111>direction with spontaneous magnetostrictionλ111 of1900 ppm.The<111>-oriented Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites with particle volume fractions of20 vol%-55 vol%were prepared.Magnetization measurements demonstrate that the composite is highly anisotropic.The raw material cost of Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)is about 85%of that of the Terfenol-D(Tb_(0.3)Dy_(0.7)Fe_(2))composition.Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composites possess comparable magnetostriction with those composites made of Tb_(0.3)Dy_(0.7)Fe_(2)particles.At room temperature,the magnetostrictionλ_Ⅱof the Nd_(0.2)Tb_(0.3)Dy_(0.5)Fe_(1.93)/epoxy composite reaches 420 ppm at a low field of 80 kA/m and about1000 ppm at 239 kA/m.In addition,the composite exhibits a large saturation magnetostrictionλ_Ⅱover1200 ppm from 300 to 100 K,suggesting its potential applications as a low-cost magnetostrictive material in a wide temperature range.Therefore,the current study offers an opportunity to widen the operating temperature range of the magnetostrictive composite.
文摘The magnetostrictive properties of <112> axial aligned Tb0.3Dy0.7(Fe1-xMx)1.95(M=Mn, Al, x=0~ 0.15) alloys prepared by directional solidification are reported. The influence of heat treatment on microstructure and the compressive stress effect of magnetostriction is discussed.
基金Project (11004091) supported by the National Natural Science Foundation of ChinaProject (Y4090219) supported by the Natural Science Foundation of Zhejiang Province, China+1 种基金Project (0916RJZA025) supported by the Natural Science Foundation of Gansu Province, ChinaProject (Q201104) supported by the "Hongliu Outstanding Youth" Foundation of Lanzhou University of Technology, China
文摘Rapidly solidified Fe100-xGax (x=16-20) alloy rods were prepared by induction melting and copper mold casting under the protection of inert gases. The optical microscopy observation shows that the large and elongated columnar grains grow along the radial direction, which is parallel to the temperature gradient direction. The preferred orientation texture along the axial direction of the rod was detected by XRD. With the increase of Ga content, the saturation magnetization (Ms) of the alloys decreases distinctly and the dynamic response in low magnetic field increases drastically, the maximum longitudinal saturation magnetostriction for as-cast Fe82Ga18 alloy rods is 92×10-6 under an applied magnetic field strength of 30 kA/m. The large magnetostriction of Fe100-xGax alloys is attributed to the rapidly solidified disordered A2 phase and the high concentration of short range order of Ga atom clusters, which are arranged in the direction and finally trigger the formation of modified-DO3 structure, just as shown by the split of the (200) diffraction peak. Ordered DO3 phase is not conducive to the magnetostriction.
基金Projects(11079022,51271093,10904071,U1332106)supported by the National Natural Science Foundation of China
文摘A set of stacked ribbons with the composition of Fe77Ga23 were prepared with different wheel velocities of 7 m/s, 12.5 m/s and 25 m/s(named as S7, S12.5 and S25, respectively). High resolution X-ray diffraction patterns of these ribbons show that all the ribbons present the disordered A2 structure, whereas an additional modified-DO3 phase is detected in S12.5 and S25. S25 has stronger(100) texture than other two samples. Ga K-edge extended X-ray absorption fine structure results indicate that both bond distance and the number of Ga atoms in the second neighbor shell around Ga decrease with increasing wheel velocity. No Ga cluster is detected in the studied ribbons. A short-range ordering Ga-rich phase and large local strain have no obvious influence on magnetostriction of S7. It is believed that both the(100) texture and the additional modified-DO3 phase play a positive role in magnetostrictive properties of Fe77Ga23 ribbons.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201037)the Fundamental Research Funds for the Central Universities(No.2012QNA4007)the Projects of Nonprofit Technology & Research in Zhejiang Province(No.2013C31025)
文摘In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation was fabricated using zone-melting unidirectional solidification technique, followed by annealing in a transverse magnetic field of 366 kA/m. The crystal orientation and bi-phase solidified morphology can be retained after magnetic annealing. A high magnetostriction of 1.508×10^-3 was obtained in the magnetically annealed specimen, which is 25.2% larger than the untreated one. Simultaneously, the magnetostriction hysteresis width is slightly enlarged from 4.45 to 6.36 kA/m, which is still much lower than that of the Ho-free Tbo.3Dy0.TFe2 alloy. The additional anisotropy which is induced by magnetic annealing, as reflected by the magnetic hysteresis loops, is responsible for the enhancement of magnetostrictive performance.
文摘Magnetostriction at room temperature under various conditions of compressive prestress and applied fields in Tb yDy 1-y (Fe 1-x T x) 2 (T=Al,Mn) twin-free single crystals were investigated. The substitution of Al or Mn for Fe lowers the magnetostriction un-der ordinary temperature and pressure, but it also decreases the saturation field, which enables these materials with potential benefits for applications.
基金financially supported by the National Basic Research Program (No. 2012CB619404)the National High-Tech R&D Program (No. 2013AA030903)the National Natural Science Foundation of China (Nos. 51331001 and 51221163)
文摘In order to demonstrate that light rare-earth(RE)dopants with strong magnetocrystalline anisotropy, whose net moment couples are antiparallel to those of iron, can also induce giant magnetostriction in Gafenol, a light RE element Sm was selected as the third element to dope into FeGaalloy.(FeGa)Sm(0≤x≤0.42) ribbons were prepared by melt spinning. The increase of the lattice parameters and saturation magnetization indicates that some Sm atoms enter the A2 matrix substitutionally. Doping the FeGaribbons with the light RE Sm element drastically improves the magnetostriction. Perpendicular magnetostriction value of λ=-5*10is achieved in(FeGa)Sm. It is confirmed that the stronger local magnetocrystalline anisotropy induces larger enhanced magnetostrictions. The greatly enhanced magnetostriction is somehow related to the local microstrains induced by the RE dopants. It is likely that the RE-induced defects in the(FeGa)REribbons function in the similar way as the Ga–Ga pair defects in the undoped Fe–Ga alloys.
文摘As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys(based on Tb0.27-0.30Dy0.73-0.70Fe1.9-2Laves compound) can be applied in many engineering fields, such as sonar transducer systems, sensors, and micro-actuators. However, the cost of the rare earth elements Tb and Dy is too high to be widely applied for the materials. Nowadays, there are two different ways to substitute for these alloying elements. One is to partially replace Tb or Dy by cheaper rare earth elements, such as Pr, Nd, Sm and Ho; and the other is to use non-rare earth elements, such as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe to form single MgCu_2-type Laves phase and a certain amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of the alloy. This paper systemically introduces the development, the fabrication methods and the corresponding preferred growth directions of Tb-Dy-Fe alloys. In addition, the effects of alloying elements and heat treatment on magnetostrictive and mechanical properties of Tb-Dy-Fe alloys are also reviewed, respectively. Finally, some possible applications of Tb-Dy-Fe alloys are presented.
基金Project supported by National Natural Science Foundation of China (50561001)"863" program (2008AA042207)International Cooperation Project (2010DFA52570)
文摘The crystal structure,microstructure and the magnetostriction of Fe83Ga17Dyx(x=0,0.2,0.4,0.6) series alloys were studied.The results showed that the influence of the Dy on the crystal structure of the alloy was very small but the effect on the microstructure was significant when different contents of Dy were added into the Fe83Ga17 alloy,respectively.Meanwhile,the magnetostriction of Fe83Ga17Dy0.2 alloy was greatly enhanced,the magnetostriction λ value reached 300×10-6 at 400(kA/m) magnetic field.
基金financially supported by the Major State Basic Research Development Program of China(No.2011CB606304)the Fundamental Research Funds for Central Universities of China(No.FRF-SD-12-025A)+1 种基金the National Natural Science Foundation of China(No.51371028)the State Key Lab of Advanced Metals and Materials Funds of China(No.2011Z-02)
文摘Fe80Ga20-xAlx (x = 0, 6, 9, 14) ingots were prepared from high purity elements using a vacuum induction system. X-ray diffraction patterns show that the alloys are A2 disordered structures. The influence of the partial substitution of Ga in Fe-Ga alloys with A1 on their magnetostrictive properties was investigated, and the effects of different heat treatment conditions on the magnetostriction and microstructure of the alloy rods were also examined. The saturation magnetostriction value of FesoGa2o can reach to 240 x 10-6 under a compressive stress of 20 MPa. The Fe80GallA19 alloy has many good properties, such as low hysteresis, high linearity of the magnetostriction curve, and low saturated magnetic field, which make it a potential candidate for magnetostrictive actuator and transducer applications. It is found that subgrains have little influence on the magnetostriction of Fe-Ga alloys.
基金supported by the National Natural Science Foundation of China (Nos.50571034 and 50971056) and the State Key Laboratory of Powder Metallurgy,Central South University
文摘The microstructure,in-plane anisotropy,and magnetic properties of Fe-Ga thin films were investigated by X-ray diffraction analysis,vibrating sample magnetometer,and capacitive cantilever method.The in-plane induced anisotropy is well formed by the applied magnetic field during sputtering,and the anisotropy field Hk decreases with the sputtering power increasing.The coercivity of Fe-Ga thin films decreases with increasing power when the sputtering power is less than 60 W and increases when the power is larger than 60 W.The magnetostriction of the thin films reaches 66 × 10-6 at the sputtering power of 60 W.Excellent Fe-Ga films,which exhibit good field sensitivity,low coercivity and high magnetostriction,have been fabricated at the power of 60 W,and they can be used as the materials of magnetostrictive transducers.
文摘The intrinsic brittleness of the TbDyFe alloy significantly decreases its mach inability and applications.This paper aims to improve the toughness of TbDyFe alloy by adding Cu. Various alloys of the type(Tb_(0.3)Dy_(0.7))_(0.37)Fe_(0.63-χ)Cu_χ(χ=0, 0,01.0.03, 0.05, 0.08, 0.1) were fabricated by an arc melting furnace under a high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance were studied systematically. The results show that the (Tb,Dy)Cu phase forms in these alloys upon the addition of Cu. Correspondingly, their toughness improves, attributed to the formation of a (Tb,Dy)Cu phase. Compared to the Cu-free alloy, the fracture toughness (Kic) increases 2-3 times with increasing Cu content. However, the magnetostriction performance of these alloys declines with Cu addition, due to the low-magnetic performance of the (Tb,Dy)Cu phase at room temperature. Compared with other alloys, the alloy with the addition of 1at%Cu shows the best compromise between the saturation magnetostriction and fracture toughness.
基金supported by the National Natural Science Foundation of China (Nos. 50801039 and 50744014)It was also supported by the Natural Science Foundation of Zhejiang Province (Nos. Y406389)Ningbo City (Nos. 2007A610029 and 2005A610022)
文摘The C15 Laves phase with composition Tb0.2Pr0.8(Fe0.4Co0.6)1.93 was synthesized by mechanical alloying (MA) and subsequent annealing process. The structure and magnetic properties of Tb0.2Pr0.8(Fe0.4Co0.6)1.93 were investigated by means of X-ray diffraction (XRD), a vibrating sample magnetometer, and a standard strain technique. The effect of annealing on the structure and magnetic properties was studied. The analysis of XRD shows that the high Pr-content Tb0.2Pr0.8(Fe0.4Co0.6)1.93 alloy with the single phase of MgCu2-type structure can be successfully synthesized by MA method. The sample annealed at 450℃ is found to have a coercivity of 196 kA/m at room temperature. An epoxy/Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite was produced by a cold isostatic pressing technique. A large magnetostriction of 400 ppm, at an applied magnetic field of 800 kA/m, was found for the composite. The epoxy-bonded Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite combines a high magnetostriction with a significant coercivitv, which is a oromising magnetostrictive material.
基金supported by the National Natural Science Foundation of China (No.51004011 and 50874010)the Specialized Research Fund for the Doctoral Program of China Higher Education (No.20090006120012)
文摘Bonded Terfenol-D composites,with high electrical resistivity and low eddy current loss,can be used in an alternating magnetic field with high frequency.However,the nonmagnetic binder impairs the magnetostriction of the composites.To achieve high magnetostriction and low eddy current loss,the mixture of the alloy powder and binder was compressed at low pressure in an oriented magnetic field.After this,the aligned samples were recompressed by cold isostatic pressing(CIP).Besides,the effect of particle size on the magnetostriction of the bonded Terfenol-D composites was also studied.The results showed that the bonded Terfenol-D composites had excellent magnetostriction when the particle size was 50-80 μm.The oriented magnetic field and CIP could improve the magnetostriction of the bonded composites,which reaches 1020×10-6.The bonded Terfenol-D composites had good compact structure and high density(7.24 g/cm3).The magnetic loss of the bonded Terfenol-D composites was 192 mW/cm3 at a frequency of 100 kHz in a magnetic field of 960 A/m,which was about one third of that of casting Terfenol-D alloys.
基金financially supported by the National High Technology Research and Development Program of China(No.2011AA03A404).
文摘<110> oriented Tb0.27Dy0.73Fe1.95 alloys were studied under different applied compressive prestresses.Larger saturation magnetostriction by 500×10-6 is obtained for the sample under 5 MPa than that under no applied stress.To understand the effect of prestress on the magnetostrictive coefficient,differential magnetostrictive coefficient,relative permeability and coercive force were studied in detail.The results show that the maximum differential magnetostrictive coefficient is about 37 x 10-9 m·A-1,about two times that without stress.In addition,the saturation magnetostriction coefficient increases gradually with the stress increasing,while the maximum differential magnetostrictive coefficient decreases.The saturation inductions under different stresses are similar to a value of about 1.1 T.The relative permeability decreases with stress increasing.
基金financially supported by the National Natural Science Foundation of China(Nos.50801039and11074227)Natural Science Foundation of Zhejiang Province(No.Y4090022),Ningbo City(No.2012A610054)K.C.Wong Magna Fund in Ningbo University
文摘Mechanical alloying (MA) and subsequent solid sintering process was used to prepare the Nd-containing magnetostrictive Tb0.4Nd0.6(Fe0.8Co0.2)1.90 alloy. The structure, thermal stability and phase transformation were investigated as functions of composition, milling process and annealing temperature. An amorphous phase was formed by high-energy ball milling for 5 h with the ball-to-powder weight ratio of 20:1, which crystallized into MgCu2-type and PuNi3-type crystalline structure with different annealing temperatures. The magnetoelastic properties were investigated by means of a standard strain technique. The high Nd-content (Tb,Nd)(Fe,Co)2 Laves phase for the composition Tb0.4Nd0.6(Fe0.8Co0.2)1.90 was synthesized by MA process plus annealing at 500 ℃ for 30 min.
文摘The physical modelanditsequivalentcircuitoftestapparatusissetup by meansofimpedanceanalysis method. The magnetostriction coefficient, magnetomechanicalcoupling coefficient,frequency and anti- frequency of TbxDy1 - xFe2 - z(0 27 ≤x ≤0 3 ,0 ≤z ≤0 1) rod are measured. Somecoupling problems with mechanicalstress and electromagnetic field such as flux leakage in magnetic path are discussed. The comparing calculated with tested resultsshowsthe accuracyof measurementand thesimplification of model.