A nonlinear and time-varying gyroplane jump takeoff dynamics model considering the unsteady ground effect and the rapid blade-pitch increase(RBPI) is developed and validated against the experiment data.The precisions ...A nonlinear and time-varying gyroplane jump takeoff dynamics model considering the unsteady ground effect and the rapid blade-pitch increase(RBPI) is developed and validated against the experiment data.The precisions of the proposed model,an experienced Hollmann model and three other simplified models are compared by displaying the height and rpm time histories of those models and the experimental data.The mean square errors(MSE) of the height histories and maximum height errors(MHE) between those models are calculated and given out.The statistics provide a kind of evaluation method of importance of the unsteady ground effect,RBPI,and the induced velocity on jump takeoff performance in vertical phase.The impact of the unsteady ground effect and RBPI on the thrust and induced velocity of the experimental rotor of a small scale platform is analyzed.The study indicates that the proposed model agrees better with the experimental data than other models.It is useful for predicting the gyroplane jump takeoff performance for design.展开更多
A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB...A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB to investigate the heat dissipation performance of this novel MCPCB.It was found that MHE MCPCB can obviously enhance the comprehensive optical properties of LED in comparison with 4 W/(m·K)regular MCPCB.Additionally,thermal contact resistance confining a dominant part of heat within the micro heat exchanger to achieve high efficient heat dissipation was proved.展开更多
The Magnus Hall effect(MHE) is a new type of linear-response Hall effect, recently proposed to appear in two-dimensional(2D) nonmagnetic systems at zero magnetic field in the ballistic limit. The MHE arises from a sel...The Magnus Hall effect(MHE) is a new type of linear-response Hall effect, recently proposed to appear in two-dimensional(2D) nonmagnetic systems at zero magnetic field in the ballistic limit. The MHE arises from a self-rotating Bloch electron moving under a gradient-electrostatic potential, analogous to the Magnus effect in the macrocosm. Unfortunately, the MHE is usually accompanied by a trivial transverse signal, which hinders its experimental observation. We systematically investigate the material realization and experimental measurement of the MHE, based on symmetry analysis and first-principles calculations. It is found that both the out-ofplane mirror and in-plane two-fold symmetries can neutralize the trivial transverse signal to generate clean MHE signals. We choose two representative 2D materials, monolayer MoS_(2), and bilayer WTe_(2), to study the quantitative dependency of MHE signals on the direction of the electric field. The results are qualitatively consistent with the symmetry analysis, and suggest that an observable MHE signal requires giant Berry curvatures. Our results provide detailed guidance for the future experimental exploration of MHE.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51505031)
文摘A nonlinear and time-varying gyroplane jump takeoff dynamics model considering the unsteady ground effect and the rapid blade-pitch increase(RBPI) is developed and validated against the experiment data.The precisions of the proposed model,an experienced Hollmann model and three other simplified models are compared by displaying the height and rpm time histories of those models and the experimental data.The mean square errors(MSE) of the height histories and maximum height errors(MHE) between those models are calculated and given out.The statistics provide a kind of evaluation method of importance of the unsteady ground effect,RBPI,and the induced velocity on jump takeoff performance in vertical phase.The impact of the unsteady ground effect and RBPI on the thrust and induced velocity of the experimental rotor of a small scale platform is analyzed.The study indicates that the proposed model agrees better with the experimental data than other models.It is useful for predicting the gyroplane jump takeoff performance for design.
文摘A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB to investigate the heat dissipation performance of this novel MCPCB.It was found that MHE MCPCB can obviously enhance the comprehensive optical properties of LED in comparison with 4 W/(m·K)regular MCPCB.Additionally,thermal contact resistance confining a dominant part of heat within the micro heat exchanger to achieve high efficient heat dissipation was proved.
基金Supported by the National Basic Research Program of China (Grant No.2019YFA0308403)the National Natural Science Foundation of China (Grant Nos.11822407,11947212,11704348,and NSFC20SC07)+1 种基金the China Postdoctoral Science Foundation (Grant No.2018M640513)the Hong Kong Research Grants Council (Grant Nos.26302118,16305019,and N HKUST626/18)。
文摘The Magnus Hall effect(MHE) is a new type of linear-response Hall effect, recently proposed to appear in two-dimensional(2D) nonmagnetic systems at zero magnetic field in the ballistic limit. The MHE arises from a self-rotating Bloch electron moving under a gradient-electrostatic potential, analogous to the Magnus effect in the macrocosm. Unfortunately, the MHE is usually accompanied by a trivial transverse signal, which hinders its experimental observation. We systematically investigate the material realization and experimental measurement of the MHE, based on symmetry analysis and first-principles calculations. It is found that both the out-ofplane mirror and in-plane two-fold symmetries can neutralize the trivial transverse signal to generate clean MHE signals. We choose two representative 2D materials, monolayer MoS_(2), and bilayer WTe_(2), to study the quantitative dependency of MHE signals on the direction of the electric field. The results are qualitatively consistent with the symmetry analysis, and suggest that an observable MHE signal requires giant Berry curvatures. Our results provide detailed guidance for the future experimental exploration of MHE.