期刊文献+
共找到1,096篇文章
< 1 2 55 >
每页显示 20 50 100
Uniform single-crystal mesoporous metal-organic frameworks with tunable architectures
1
作者 Xin Chen Zaiwang Zhao Yujuan Zhao 《Chinese Journal of Structural Chemistry》 2025年第9期5-7,共3页
As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 n... As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges. 展开更多
关键词 uniform single crystal mesoporous metal organic frameworks meso MOFs pore ordering biological macromolecular catalysisene crystalline porous materialsmetal organic mesoporous metal organic frameworks macromolecular mass transfer pore topology
原文传递
Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage 被引量:1
2
作者 Wenjing Xiong Yulin Xu +5 位作者 Fangzhou Zhao Baokai Xia Hongqiang Wang Wei Liu Sheng Chen Yongzhi Zhang 《Chinese Chemical Letters》 2025年第4期501-506,共6页
Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-ba... Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-based anodes.In this work,calcium D-gluconate derived mesoporous carbon nanosheets(CGC)were interpenetrated into the architecture of reduced graphene oxides(RGO)to form the composites of two-dimensional(2D)/2D graphene/mesoporous carbon nanosheets(RGO@CGC).CGC as a rigid skeleton can prevent the graphene layers from restacking and maintain the structural stability of the 2D/2D carbon composites of RGO@CGC.The mesopores in CGC can shorten the path of ion diffusion and facilitate the penetration of electrolytes.RGO possesses the high surface-to-volume ratio and superior electron transport capability in the honeycomb-like 2D network consisting of sp^(2)-hybridized carbon atoms.Especially,theπ-πstacking interaction between CGC and RGO enhances stable composite structure formation,expedites interlayer-electron transfer,and establishes three-dimensional(3D)ion transportation pathways.Owing to these unique structure,RGO@CGC exhibits fast and stable potassium storage capability.Furthermore,the effects of binders and electrolytes on the electrochemical performance of RGO@CGC were investigated.Finally,Prussian blue was synthesized as a positive electrode to explore the possibility of RGO@CGC as a full battery application. 展开更多
关键词 Potassium storage GRAPHENE mesoporous carbon nanosheets Composite High-rate capability
原文传递
Novel mesoporous CeVWO_(x)/TiO_(2)nanosheets for selective catalytic reduction of NO by NH_(3) 被引量:1
3
作者 Shihao Li Mengli Han +5 位作者 Youlin Liu Ronghai Zhang Xu Wang Jianhai Wang Sasa Gu Yuesong Shen 《Journal of Rare Earths》 2025年第3期500-507,I0003,共9页
Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalyst... Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalysts with unique mesoporous and layered structure were successfully prepared through the synthesis of Ce,Ti-MOFs by solvothermal method,the impregnation of vanadium and tungsten in Ce,Ti-MOFs and high temperature calcination process.As NH_(3)-SCR catalysts,well-designed CeVWO_(x)/TiO_(2)catalysts exhibit excellent SCR activity with the NO_(x)conversion of over 90%between 210 and 470℃.Meanwhile,CeVWO_(x)/TiO_(2)shows superior tolerance to water vapor and SO_(2).The features of unique mesoporous layered nanostructure,surface acidity,tunable reducibility,active and the strong interaction of active metal oxide and support in CeVWO_(x)/TiO_(2)nanosheets should contribute to the improved SCR performance.In situ diffuse reflection infrared Fourier transform spectroscopy(DRIFTS)analysis indicates that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms are present on the surface of CeVWO_(x)/TiO_(2)at low temperature.This work offers a facile strategy to design and fabricate efficient 2D deNO_x catalyst. 展开更多
关键词 mesoporous nanosheets Dual metal MOF Wide temperature window NH_(3)-SCR Rare earths
原文传递
Hydroxy-α-sanshool-loaded adipose-targeted mesoporous silica nanoparticles induce white adipose browning and reduce obesity by activating TRPV1 被引量:1
4
作者 Qing Zhang Chengxun He +5 位作者 Juan Guo Dandan Tang Die Qian Chuan Zheng Chunjie Wu Wei Peng 《Bio-Design and Manufacturing》 2025年第2期288-309,I0005-I0011,共29页
Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxy... Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects. 展开更多
关键词 Hydroxy-α-sanshool Adipocyte targetability mesoporous silica nanoparticles White adipose tissue browning OBESITY
在线阅读 下载PDF
Effect of Modified Mesoporous Silica Nanoparticle/Zein Composite Film on the Preservation of Fish Fillets
5
作者 YIN Tianxiang JIANG Xinyue +2 位作者 SUN Tianyu LIU Xiaoli LIU Jinyuan 《食品科学》 北大核心 2025年第24期263-274,共12页
To alleviate the quality deterioration and extend the shelf life of crucian carp fillets,a bio-based active composite film integrating eugenol(EG)-loaded mesoporous silica nanoparticles(MSNs)modified with caffeic acid... To alleviate the quality deterioration and extend the shelf life of crucian carp fillets,a bio-based active composite film integrating eugenol(EG)-loaded mesoporous silica nanoparticles(MSNs)modified with caffeic acid(CA)within the zein matrix(EG/CA-MSN/Zein)was developed.This study compared the effects of EG/CA-MSN/Zein,polyethylene(PE),and zein films on the quality of fish fillets during refrigerated storage.The results showed that the EG/CA-MSN/Zein film significantly retarded the increase in pH and microbial growth.Moreover,the film had higher water-holding capacity(WHC),better texture,and color stability,as indicated by low-field nuclear magnetic resonance(LF-NMR),magnetic resonance imaging(MRI),and sensory evaluation.The EG/CA-MSN/Zein composite film extended the shelf life of crucian carp fillets by 3-4 days,highlighting its potential as an environmentally friendly and efficient packaging material for aquatic products. 展开更多
关键词 ZEIN composite film EUGENOL mesoporous silica nanoparticles food preservation
在线阅读 下载PDF
SnO_(2)Particles Embedded into Carbon Coated Mesoporous SiO_(x)Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries
6
作者 Jia-Lin Guo Ni-Ni Li Peng Zheng 《电化学(中英文)》 北大核心 2025年第2期28-34,共7页
Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes i... Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V. 展开更多
关键词 Carbon coating mesoporous SiO_(x) ANODE Li-ion battery
在线阅读 下载PDF
Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis
7
作者 Hao Deng Jia Liu Zhong-Jun Hou 《电化学(中英文)》 北大核心 2025年第5期37-61,共25页
Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morpho... Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts. 展开更多
关键词 mesoporous carbon support Electrochemical active surface area Platinum coverage Oxygen transport resistance Pore volume distribution
在线阅读 下载PDF
Tension-strained mesoporous Pt nanosheets for Li-CO_(2) battery with low overpotential
8
作者 Jing Zhang Yuchun Liu +2 位作者 Xinpei Lin Zhihao Liu and Min Zhou 《中国科学技术大学学报》 北大核心 2025年第6期49-55,48,I0002,共9页
The slow kinetics of the cathode CO_(2) reduction reaction and the decomposition reaction of Li2CO3,a widebandwidth insulating product,lead to difficult CO_(2) capture and high charging potential in Li-CO_(2) batterie... The slow kinetics of the cathode CO_(2) reduction reaction and the decomposition reaction of Li2CO3,a widebandwidth insulating product,lead to difficult CO_(2) capture and high charging potential in Li-CO_(2) batteries.To improve the reaction kinetics and decrease the reaction overpotential,we synthesized mesoporous Pt nanosheets with high tensile strain.The presence of many unsaturated coordinated Pt atoms around the pores gives rise to tensile strain in the mesoporous Pt nanosheets.This tensile strain plays a key role in regulating the interactions between the catalytic surface of Pt and the adsorbed intermediates.The two-dimensional structure provides more active sites on the surface for the catalytic reactions.These superiorities enable a low overpotential of 0.36 V at a cutoff capacity of 100μAh·cm^(−2) at a current density of 10μA·cm^(−2) over more than 2000 h.This study opens new possibilities for the rational design of metal-based materials with strain engineering for electrochemical energy storage. 展开更多
关键词 Li-CO_(2)battery Pt nanosheets mesoporous tension strain
在线阅读 下载PDF
Effect of pore size in mesoporous MnO_2 prepared by KIT-6 aged at different temperatures on ethanol catalytic oxidation 被引量:3
9
作者 拜冰阳 乔琦 +2 位作者 李艳萍 彭悦 李俊华 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期630-638,共9页
KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these cat... KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these catalysts and the effect of pore sizes on ethanol catalytic oxidation were investigated.Mn‐40,Mn‐100,and Mn‐150 have triple,double,and single pore systems,respectively.On decreasing the aging temperature of KIT‐6,the pore sizes of KIT‐6 decrease and that of mesoporous MnO2 catalysts increase.The pore sizes and catalytic activities increase in the order:Mn‐40>Mn‐100>Mn‐150.Mn‐40 catalyst has a higher TOF(0.11 s–1 at 120°C)and the best catalytic activity for ethanol oxidation because of a bigger pore size with three pore systems with maximum distribution at 1.9,3.4,and 6.6 nm,decrease in symmetry and degree of order,more surface lattice oxygen species,oxygen vacancies resulting from more Mn3+ions,and better low‐temperature reducibility. 展开更多
关键词 mesoporous MnO2 Pore channel KIT‐6 mesoporous silica Catalytic activity Ethanol oxidation
在线阅读 下载PDF
Mesoporous Silica-Based Photocatalytic Materials for Solar Energy Storage and Utilization
10
作者 Rui Sun Yaqi Wu +3 位作者 Ning Han Liang Chen Zhangxing Chen Heng Zhao 《Carbon Energy》 2025年第10期120-150,共31页
The efficient storage and application of sustainable solar energy has drawn significant attention from both academic and industrial points of view.However,most developed catalytic materials still suffer from insuffici... The efficient storage and application of sustainable solar energy has drawn significant attention from both academic and industrial points of view.However,most developed catalytic materials still suffer from insufficient mass diffusion and unsatisfactory durability due to the lack of interconnected and regulatable porosity.Developing catalytic architectures with engineered active sites and prominent stability through rational synthesis strategies has become one of the core projects in solar-driven applications.The unique properties of mesoporous silicas render them among the most valuable functional materials for industrial applications,such as high specific surface area,regulatable porosity,adjustable surface properties,tunable particle sizes,and great thermal and mechanical stability.Mesoporous silicas serve as structural templates or catalytic supports to enhance light harvesting via the scattering effect and provide large surface areas for active site generation.These advantages have been widely utilized in solar applications,including hydrogen production,CO_(2)conversion,photovoltaics,biomass utilization,and pollutant degradation.To achieve the specific functionalities and desired activity,various types of mesoporous silicas from different synthesis methods have been customized and synthesized.Moreover,morphology regulation and component modification strategies have also been performed to endow mesoporous silica-based materials with unprecedented efficiency for solar energy storage and utilization.Nevertheless,reviews about synthesis,morphology regulation,and component modification strategies for mesoporous silica-based catalyst design in solar-driven applications are still limited.Herein,the latest progress concerning mesoporous silica-based catalysis in solar-driven applications is comprehensively reviewed.Synthesis principles,formation mechanisms,and rational functionalities of mesoporous silica are systematically summarized.Some typical catalysts with impressive activities in different solar-driven applications are highlighted.Furthermore,challenges and future potential opportunities in this study field are also discussed and proposed.This present review guides the design of mesoporous silica catalysts for efficient solar energy management for solar energy storage and conversion applications. 展开更多
关键词 applications mesoporous silicas MODIFICATION photocatalytic materials synthesis
在线阅读 下载PDF
Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber
11
作者 Guizhi Zhu Junrui Tan +5 位作者 Longfei Tan Qiong Wu Xiangling Ren Changhui Fu Zhihui Chen Xianwei Meng 《Chinese Chemical Letters》 2025年第1期381-386,共6页
High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce... High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce-doped Co-metal-organic framework(Ce Co-MOF)in dendritic mesoporous organosilica nanoparticles(DMONs@Ce Co-MOF,denoted as DCCM)to prepare a novel antioxidant that exhibit outstanding thermal stability.Dendritic mesoporous organosilica nanoparticles(DMONs)effectively alleviated the incompatibility of Ce Co-MOF in the polymer matrix,and the effective scavenging of free radicals was attributed to the various oxidation states of metal ions in Ce Co-MOF.Surprising,by adding only0.5 phr(parts per hundred of rubber)of DMONs@Ce Co-MOF to silicone rubber,(SR),the retention rate of tensile strength increased from 37.3%to 61.6%after aging 72 h at 250℃,and the retention rate of elongation at break of DCCM/SR1 composites reached 68%,which was 5.43 times of SR.The strategy of anchoring MOFs on the surface of silica also provides a viable method for preparing effective compound functionalized rubber antioxidant. 展开更多
关键词 mesoporous organosilica nanoparticles Silicone rubber Metal-organic framework ANTIOXIDANTS Thermal stability Thermal oxidative degradation
原文传递
Eco-friendly synthesis coupled with predictive analytics:Developing hierarchical lignin-derived ordered mesoporous carbon for advanced supercapacitors
12
作者 Xiaolan Zhao Xiaoqi Wang +5 位作者 Pei Gao Peng Zhao Jingjing Wang Yingna Li Zhibin Han Boxiong Shen 《Green Energy & Environment》 2025年第6期1256-1269,共14页
Hierarchical lignin-derived ordered mesoporous carbon(HOMC)was significant for advanced supercapacitors.However,achieving controllable fabrication and optimizing electrochemical behavior were challenging.In this work,... Hierarchical lignin-derived ordered mesoporous carbon(HOMC)was significant for advanced supercapacitors.However,achieving controllable fabrication and optimizing electrochemical behavior were challenging.In this work,an eco-friendly HOMC was synthesized using lignin as carbon precursors and Zn^(2+)as cross-linking and pore-forming agents,followed by KHCO_(3)activation,eliminating the need for toxic phenolic resins and acid treatments for metal removal.Machine learning technology,specifically an Artificial Neural Network(ANN model,was utilized to assist the experimental design and prediction.The ANN model suggested an ideal hierarchical structure and optimized oxygen level,achieved through the adjustment of Zn^(2+)additive concentration,carbonization temperature,and subsequent KHCO_(3)activation to maximize capacitance.The HOMC electrode,with a micropore-to-mesopore ratio(S_(micro)/S_(meso))of 1.01 and an oxygen content of 8.81 at%,acquired a specific capacitance of 362 F·g^(-1)at 0.5 A·g^(-1)in 6 mol·L^(-1)KOH electrolyte.The assembled HOMC//HOMC supercapacitor could afford a high energy density of 33.38 Wh·kg^(-1)with a corresponding specific power density of 300 W·kg^(-1)in TEATFB PC electrolyte.Meanwhile,the long-term cycle stability of 94.33%was achieved after 20,000 cycles.This work provides an ANN assisted strategy for the synthesis of HOMC,highlighting its potential to valorize biomass and agricultural waste in sustainable energy storag solutions. 展开更多
关键词 LIGNIN Biomass Hierarchical ordered mesoporous carbon Machine learning Artificial neural network SUPERCAPACITOR
在线阅读 下载PDF
Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO_(2)nano-membrane for enhancing catalytic performance
13
作者 Guang-Xu Duan Queting Chen +3 位作者 Rui-Rui Shao Hui-Huang Sun Tong Yuan Dong-Hao Zhang 《Chinese Chemical Letters》 2025年第2期251-255,共5页
The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surfa... The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surface of magnetic zeolitic imidazolate framework-8(ZIF-8)nanospheres,which was further encapsulated with a mesoporous SiO_(2)nano-membrane formed by tetraethyl orthosilicate(TEOS)polycondensation.Consequently,lipase could be firmly immobilized on carrier surface by physical binding rather than chemical binding,which did not damage the active conformation of enzyme.There were mesopores on the silica nano-membrane,which could improve the accessibility of enzyme and its apparent catalytic activity.Moreover,silica membrane encapsulation could also improve the stability of enzyme,suggesting an effective enzyme immobilization strategy.It showed that TEOS amount and the encapsulation time had significant effects on the thickness of silica membrane and the enzyme activity.The analysis in enzyme activity and protein secondary structure showed that lipase encapsulated in silica membrane retained the active conformation to the greatest extent.Compared with the adsorbed lipase,the encapsulated lipase increased its thermostability by 3 times and resistance to chemical denaturants by 7 times.The relative enzyme activity remained around 80%after 8 repetitions,while the adsorbed lipase only remained at7.3%. 展开更多
关键词 Enzyme immobilization ZIF-8 ENCAPSULATION mesoporous silica membrane Lipase activity
原文传递
The Preparation of High-performance Mesoporous Proposed Pseudo-boehmite(γ-AlOOH)Modified by H_(2)O_(2) Based on Molecular Dynamics
14
作者 ZENG Fanbiao LIU Zhanwei +3 位作者 YAN Hengwei LI Lan LI Mengnan HU Mingyi 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1739-1749,共11页
To efficiently address the current high cost associated with preparing pseudo-boehmite from organic aluminum,a low-cost alternative,AlCl_(3),is employed as the raw material.The sol-gel method is utilized,and H_(2)O_(2... To efficiently address the current high cost associated with preparing pseudo-boehmite from organic aluminum,a low-cost alternative,AlCl_(3),is employed as the raw material.The sol-gel method is utilized,and H_(2)O_(2)is incorporated for the modification of pseudo-boehmite.The modification mechanism is thoroughly investigated through the use of X-ray powder diffractometer,scanning electron microscope,and BET data analysis,as well as molecular dynamics simulations.Under specific conditions(temperature at 80°C,pH=7,and H_(2)O_(2)volume ratios of 0.5:1,1:1,and 2:1),mesoporous pseudo-boehmite is synthesized with a specific surface area of 227 m^(2)/g,a pore volume of 0.281 cm^(3)/g,a pore size of 6.78 nm,and a peptizing index of 99.47%.A novel and innovative methodology for the cost-effective production of high-performance alumina is offered through the approach. 展开更多
关键词 aluminum oxide molecular dynamics mesoporous material PSEUDO-BOEHMITE porous structures
原文传递
Single[Ga(OH)]^(2+)species supported on mesoporous hollow-structured H-ZSM-5:A highly efficient light alkanes aromatization catalyst
15
作者 Dezhi Shi Yanyan Chen +9 位作者 Xiao Chen Sen Wang Qiang Wang Pengfei Wang Huaqing Zhu Mei Dong Jun Xu Feng Deng Jianguo Wang Weibin Fan 《Chinese Journal of Catalysis》 2025年第5期359-375,共17页
Aromatization of light alkanes is a value-added process in both petrochemical and coal chemical industries.Here,single[Ga(OH)]^(2+)ion-exchanged mesoporous hollow-structured ZSM-5(Ga-MH-ZSM-5)material was prepared,and... Aromatization of light alkanes is a value-added process in both petrochemical and coal chemical industries.Here,single[Ga(OH)]^(2+)ion-exchanged mesoporous hollow-structured ZSM-5(Ga-MH-ZSM-5)material was prepared,and it shows unprecedented catalytic performance in light alkane aromatization,considering activity,product selectivity and catalytic stability.The average aromatics yields in ethane aromatization at 600℃and WHSV of 0.8 h^(-1) within 28 h and in propane aromatization at 580℃and WHSV of 1.1 h^(-1) within 20 h reach~18.4%and~70.8%with benzene,toluene and xylenes(BTX)accounting for~96%and~88%of aromatics,respectively.Ga-MH-ZSM-5-0.41 gave a TON for formation of aromatics(TON_(aromatics))from propane as high as 57479,whereas the reported catalysts maximally show a TON_(aromatics) of 5514.This also holds true for ethane aromatization;the TON_(aromatics) obtained on Ga-MH-ZSM-5-0.41 was³3845 in contrast to£392 on reported non-noble metal catalysts.The catalytic activity of Ga-MH-ZSM-5 highly depends on Ga species structures.[Ga(OH)]^(2+)ions are predominant species at Ga loading≤0.3 wt%,while more[Ga(OH)_(2)]^(+)and GaO_(x) oligomers are formed with increasing Ga content.Upon reduction with H_(2),[Ga(OH)]^(2+)and[Ga(OH)_(2)]^(+)are transformed into[GaH]^(2+)and[GaH_(2)]^(+)species,which show a propane dehydrogenation rate of 300 and 15 times of that of Brønsted acid sites respectively.The light alkanes are mainly dehydrogenated into light olefins on[GaH]^(2+)species,and then,oligomerized and cyclized into(alkyl)cycloalkanes on H^(+)sites,which is followed by possible ring expansion on H^(+)and sequential dehydrogenations into aromatics primarily on[GaH]^(2+). 展开更多
关键词 Light alkane aromatization mesoporous hollow-structured H-ZSM-5 Isolated Ga species Active site Reaction mechanism
在线阅读 下载PDF
Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics
16
作者 Mengwei Ye Qingqing Xu +7 位作者 Huanhuan Jian Yiduo Ding Wenpeng Zhao Chenxiao Wang Junya Lu Shuaipeng Feng Siling Wang Qinfu Zhao 《Chinese Chemical Letters》 2025年第6期15-30,共16页
Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification ... Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification and good biocompatibility.However,as a result of the poor biodegradability of MsNs,their biomedical applications are limited.To break the bottleneck of limited biomedical applications of MSNs,more and more researchers tend to design biodegradable MSNs(b-MSNs)nanosystems to obtain biodegradable as well as safe and reliable drug delivery carriers.In this review,we focused on sum-marizing strategies to improve the degradability of MsNs and innovatively proposed a series of advan-tages of b-MsNs,including controlled cargo release behavior,multifunctional frameworks,nano-catalysis,bio-imaging capabilities and enhanced therapeutic effects.Based on these advantages,we have inno-vatively summarized the applications of b-MsNs for enhanced tumor theranostics,including enhanced chemotherapy,delivery of nanosensitizers,gas molecules and biomacromolecules,initiation of immune response,synergistic therapies and image-guided tumor diagnostics.Finally,the challenges and further clinical translation potential of nanosystems based on b-MsNs are fully discussed and prospected.We believe that such b-MsNs delivery carriers will provide a timely reference for further applications in tu-mor theranostics. 展开更多
关键词 Biodegradable mesoporous silica nanoparticles Tumor theranostics BIODEGRADABILITY Synergistic therapy Controlled release Drug delivery
原文传递
Improving CO_(2) solubility in a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/mesoporous titanium dioxide/water with confinement effect
17
作者 Haoran Yin Lili Mu +3 位作者 Yifeng Chen Licheng Li Kang Sun Xiaoyan Ji 《Chinese Journal of Chemical Engineering》 2025年第4期100-109,共10页
Confinement effect is an effective method to enhance carbon dioxide(CO_(2))solubility.In this study,a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([Hmim][NTf_2])/mesoporous titanium ... Confinement effect is an effective method to enhance carbon dioxide(CO_(2))solubility.In this study,a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([Hmim][NTf_2])/mesoporous titanium dioxide(M-TiO_(2))/water(H_2O)was developed,and its confinement effect was regulated by changing the pore structure of M-TiO_(2).CO_(2) solubility in the hybrid sorbent was measured experimentally,and the thermodynamic properties including Henry's constant and desorption enthalpy were calculated.Furthermore,the confinement effect in the hybrid sorbent was quantified.Additionally,the hybrid sorbent was recycled with a multi-cycle experiment.The results showed that M-TiO_(2) calcined at 773.2 K(MT500)could lead to an efficient confinement effect.CO_(2) solubility in the hybrid sorbent increased by 49.8%compared to that of H_2O when the mass fraction of[Hmim][NTf_2]/MT500 was 5.0%(mass),where the contribution of confinement effect on Gibbs free energy occupied 5.2%. 展开更多
关键词 Ionic liquid Carbon dioxide mesoporous titanium dioxide Confinement effect Thermodynamics
在线阅读 下载PDF
Responsive mesoporous silica nanocarriers in glioma therapy:A step forward in overcoming biological barriers
18
作者 Yasmeen Tarek Abdel-Maksoud Ahmed Helmy Abdelhaseb +3 位作者 Amr Abd-Elraheem Abdo Ahmed Mohamed Kamel Mohamed Tallat Elsebay Mohamed Salah Attia 《World Journal of Clinical Oncology》 2025年第9期16-35,共20页
Gliomas are the most common primary tumors of the central nervous system;among them,glioblastoma multiforme stands out as the most aggressive and lethal subtype,characterized by high therapeutic resistance and frequen... Gliomas are the most common primary tumors of the central nervous system;among them,glioblastoma multiforme stands out as the most aggressive and lethal subtype,characterized by high therapeutic resistance and frequent recurrences.Glioblastoma’s complex pathology is driven by biological and molecular factors that compromise conventional therapies,including blood-brain and bloodtumor barriers,angiogenesis,immune evasion,and aberrant signaling pathways,along with genetic drivers of drug resistance.In cancer therapy,mesoporous silica nanoparticles(MSNs)have shown promise as nanocarriers thanks to the unique attributes of their mesostructure,including large surfaces,uniform pore sizes,high loading efficiency,and flexibility of chemical modifications.Several studies have proposed MSNs to address a number of challenges facing drug delivery in gliomas,including limited penetration across the blood-brain barrier,non-specific biodistribution,and systemic adverse reactions.Moreover,MSNs can be functionalized with tumor-targeting ligands so that cancer cells are selectively taken up,while they can also release therapeutic agents in response to internal and external stimuli,enabling controlled drug delivery within tumor microenvironments.Herein,we review the integration of the MSN-based delivery approach with advances in molecular oncology to improve clinical outcomes for glioma therapeutics,while highlighting the concerns around their limited clinical translation and potential toxicity. 展开更多
关键词 Glioblastoma multiforme mesoporous silica nanoparticles Blood-brain barrier Stimuli-responsive drug delivery Targeted nanocarriers Tumor microenvironment
暂未订购
Mesoporous hollow silica with controlled particle size for optimizing dielectric properties and coefficient of thermal expansion of polyimide packaging materials
19
作者 Tianqi Hou Xia Liu +7 位作者 Junwen Ren Xianzhen Xu Di Lan Siyuan Zhang Hua Guo Guangrong Wu Zirui Jia Guanglei Wu 《Journal of Materials Science & Technology》 2025年第32期122-132,共11页
Demand for high-performance power devices continues to grow with the continuous development of power electronics and high-end field applications.Although packaging materials based on epoxy resins and silica gels have ... Demand for high-performance power devices continues to grow with the continuous development of power electronics and high-end field applications.Although packaging materials based on epoxy resins and silica gels have been widely developed,higher operating temperatures and operating voltages are still critical to the performance of power devices.Here,a composite film containing functionalized meso-porous hollow silica particles(MH-SiO_(2))and polyimide(PI)was prepared by a template method and layer-by-layer coating strategy to address the current bottlenecks in packaging material development.The electrical breakdown strength of the prepared PI/SiO_(2) composite film was 323.41 kV/mm,while the mass fraction of MH-SiO_(2) was only 5%.This indicates that the mesoporous structure can effectively inhibit electron collisions with nano-restricted domains.The simulation results also indicate that the size variation of inorganic fillers and the interaction of organic/inorganic heterogeneous interfaces are the main reasons affecting the performance of the composites.Meanwhile,the PI/SiO_(2) composite films achieved other properties required for practical applications,such as matched coefficient of thermal ex-pansion(CTE)(23.5 ppm/℃),excellent thermal stability(T_(5)%=559.0℃)and low dielectric constant(2.27@1 M Hz).These results highlight the great potential of inorganic phase-specific structural designs for the preparation of high-performance power device packaging materials. 展开更多
关键词 mesoporous hollow silica POLYIMIDE Coefficient of thermal expansion Dielectric properties Breakdown strength
原文传递
Hierarchically mesoporous Fe-N-C single-atom catalysts for efficient oxygen electrocatalysis in rechargeable zinc-air batteries
20
作者 Biyan Zhuang Nengneng Xu +5 位作者 Xiaoqian Xu Lingyu Dai Yongxia Wang Min Wang Kai Wu Jinli Qiao 《Materials Reports(Energy)》 2025年第3期59-66,共8页
Rechargeable zinc-air batteries(ZABs)hold significant promise for next-generation energy storage due to their unique advantages in safety,energy and cost.However,their commercial application remains hindered by the sl... Rechargeable zinc-air batteries(ZABs)hold significant promise for next-generation energy storage due to their unique advantages in safety,energy and cost.However,their commercial application remains hindered by the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),necessitating the development of highly efficient and durable electrocatalysts.Herein,we report a hierarchically mesoporous Fe-N-C catalyst(Fe-N/MPC_(S500))synthesized via a template-assisted method,which exhibits exceptional bifunctional ORR/OER performance.The Fe-N/MPC_(S500)catalyst achieves a positive ORR half-wave potential(0.86 V),along with a low OER over-potential of 510 mV at 10 mA cm^(2),surpassing those of most non-precious metal catalysts.Furthermore,in a liquid-state ZAB,Fe-N/MPC_(S500) delivers a high specific capacity of 708 mAh g^(-1),a peak power density of 409 mW cm^(2),and stable charge-discharge cycling over 470 h,outperforming commercial Pt/C+Ir/C catalysts.The outstanding performance is attributed to the hierarchical porosity,optimized Fe-N coordination,and enhanced electron/mass transport.This work presents a scalable and low-cost strategy for developing high-performance single-atom catalysts,paving the way for practical deployment in energy conversion and storage technologies. 展开更多
关键词 zinc-air batteries hierarchically mesoporous structure atomically Fe-N_(4)active sites ORR OER
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部