737MAX飞机半年内两次空难,全球停飞,各方针对事故原因及其事态的后续发展持续关注。狮航空难事件后波音发布的技术通告指出事故的关键因素是AOA(angle of attack-迎角)数据错误,但是同样的AOA传感器也安装在737NG系列飞机上,同样的事...737MAX飞机半年内两次空难,全球停飞,各方针对事故原因及其事态的后续发展持续关注。狮航空难事件后波音发布的技术通告指出事故的关键因素是AOA(angle of attack-迎角)数据错误,但是同样的AOA传感器也安装在737NG系列飞机上,同样的事故却没有发生在这系列飞机上。所以进一步的数据分析都指向Max系列飞机采用的全新技术MCAS(maneuvering characteristics augmentation system-机动特性增强系统),而波音公司一开始却否认了该技术和事故发生的直接关系,直到该系列飞机全球停飞后,波音才不得不承认该技术存在缺陷,而且目前所有恢复飞机认证的措施也都是围绕该技术的软件升级展开的。那么波音为什么在本已经很成功的机型上采用这一全新的技术,而这一技术为何又会导致事故频发,本文将探讨MCAS的来龙去脉。展开更多
Objective: The mucus production is an indicator for the histological grade of mucinous epithelial ovarian cancer (mEOC). In our previous study, Crk expression was targeted in the human ovarian mucinous adenocarcino...Objective: The mucus production is an indicator for the histological grade of mucinous epithelial ovarian cancer (mEOC). In our previous study, Crk expression was targeted in the human ovarian mucinous adenocarcinoma cell line MCAS through RNA interference, resulting in the establishment of Crk knock down cells. These cells exhibited decreased tumorigenic potential both in vitro and in vivo. The purpose of this study was to investigate if there is any change in the capability of forming mucus in these Crk knock down cells. Methods: Cytoplasmic periodic acid Schiff (PAS) staining and particle excluding assay were conducted to assess the mucus formation within and around cells, respectively. Additionally, the amount of mucus formed in tumor lumps from nude mice model was measured following HE and PAS staining. Results: The increased mucus production in Crk knockdown mEOC cells (MCAS) was manifested by increased number of enlarged cells filled with vacuoles-like mucus observed by phase-contrast microscope and cytoplasmic PAS staining; and enhanced mucus secretion was represented by the assembly of pericellular matrix in particle excluding assay and increased mucus area in tumor lumps from nude mice models. Conclusion: The course of carcinogenesis in mEOC is associated with the altered pattern of mucus production and secretion. The adaptor protein Crk is implicated in both pathways.展开更多
The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
基金a grant from the National Natural Science Foundation of China(No.C30672432,No.30772330)the Natural Science Foundation of Chongqing City(No.2007BB5319)the Japan-China Sasakawa Medical Fellowship
文摘Objective: The mucus production is an indicator for the histological grade of mucinous epithelial ovarian cancer (mEOC). In our previous study, Crk expression was targeted in the human ovarian mucinous adenocarcinoma cell line MCAS through RNA interference, resulting in the establishment of Crk knock down cells. These cells exhibited decreased tumorigenic potential both in vitro and in vivo. The purpose of this study was to investigate if there is any change in the capability of forming mucus in these Crk knock down cells. Methods: Cytoplasmic periodic acid Schiff (PAS) staining and particle excluding assay were conducted to assess the mucus formation within and around cells, respectively. Additionally, the amount of mucus formed in tumor lumps from nude mice model was measured following HE and PAS staining. Results: The increased mucus production in Crk knockdown mEOC cells (MCAS) was manifested by increased number of enlarged cells filled with vacuoles-like mucus observed by phase-contrast microscope and cytoplasmic PAS staining; and enhanced mucus secretion was represented by the assembly of pericellular matrix in particle excluding assay and increased mucus area in tumor lumps from nude mice models. Conclusion: The course of carcinogenesis in mEOC is associated with the altered pattern of mucus production and secretion. The adaptor protein Crk is implicated in both pathways.
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.