Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation...Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.展开更多
针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过...针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度–空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.展开更多
基金Project (Nos 60602012 and 60675023) supported by the National Natural Science Foundation of Chinathe National High-Tech Re-search and Development Program (863) of China (No 2007AA01Z 164)the Shanghai Key Laboratory Opening Plan Grant (No.06dz22103),China
文摘Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.
文摘针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度–空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.