期刊文献+

变权重MRF算法在图像自动无监督分割中的应用 被引量:4

Weighted MRF Algorithm for Automatic Unsupervised Image Segmentation
在线阅读 下载PDF
导出
摘要 为了实现图像的自动无监督分割,本文提出类自适应变权重马尔可夫随机场分割算法。首先结合最小描述长度准则,自适应计算马尔可夫随机场框架下的图像分类数;然后引入变权重的马尔可夫随机场算法,扩大势函数的选择范围,消除势函数的复杂计算;最后用迭代条件模式进行优化,获得最大后验概率准则下的分割图像。在Matlab环境中的测试结果表明,该算法具有实效性,能正确计算分类数,同时有效减少了分割错误。 In order to achieve the automatic unsupervised image segmentation,an algorithm based on the adaptive classification and the weighted MRF is proposed.First,combined with the MDL criterion,the number of image classification under the framework of Markov random fields is computed adaptively.And then,the weighted MRF algorithm is used to expand the option range of the potential function,thus to eliminate the complex calculation of the potential function.Finally,by using ICM algorithm to optimize the model,the segmentation image under MAP criterion is obtained.In the Matlab,test results show that the proposed algorithm is effective,which can correctly calculate the number of classification and effectively reduce the segmentation error.
出处 《计算机与现代化》 2012年第11期78-80,166,共3页 Computer and Modernization
基金 辽宁省教育厅科学技术研究项目(L2010006)
关键词 变权重马尔可夫随机场 最小描述长度准则 图像分割 无监督分割 迭代条件模式 MAP准则 weighted MRF MDL image segmentation unsupervised segmentation ICM MAP criterion
  • 相关文献

参考文献14

  • 1冈萨雷斯.数字图像处理(MATLAB版)[M]北京:电子工业出版社,2005285-320.
  • 2Li Stan Z Q. Markov Random Field Modeling in Image Analysis[M].New York:springer-verlag,2009.
  • 3Havard Rue,Leonhard Held. Gaussian Markov Random Fields:Theory and Applications[M].London:Chapman and Hall Press,2005.
  • 4Chan M,Levitan E,Herman G T. Image-modeling Gibbs distributions for Bayesian restoration[A].1994.7-12.
  • 5Noda H,Shirazi M N,Kawaguchi E. MRF-based texture segmentation using wavelet decomposed images[J].Pattern Recognition,2002,(04):771-782.
  • 6章毓晋.图像工程(上册):图像处理[M]北京:清华大学出版社,2006265-268.
  • 7Jeff A Bilmes. A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[R].Berkeley:International Computer Science Institute and Computer Science Division,1998.
  • 8Rissanen J. A universal prior for integers and estimation by minimum description length[J].Annals of Statistics,1983,(02):416-431.
  • 9李旭超,朱善安.FGMM-MRF层次模型在图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(12):2659-2664. 被引量:8
  • 10Luo Qiming,Khoshgoftaar T M. Unsupervised multiscale color image segmentation based on MDL principle[J].IEEE Transactions on Image Processing,2006,(09):2755-2761.

二级参考文献27

  • 1Langan DA,Modestino JW,Zhang J.Cluster validation for unsupervised stochastic model-based image segmentation[J].IEEE Trans Image Processing,1998,7(2):180-95.
  • 2LiangZ,JaszczakRJ,ColemanRE.Parameter estimation offinite mixtures using the EM algorithm and information criteria with application to medical image processing[J].IEEE Trans Nucl Sci,1992,39(4):1126-132.
  • 3Lei T,Sewchand W.Statistical approach to X-ray CT imaging and its applications in image analysis-Part Ⅱ:A new stochastic model-based image segmentation technique for X-ray CT image[J].IEEE Trans Med Imag,1992,11(1):62-69.
  • 4Lei T,Sewchand W.Statistical approach to X-ray CT imaging and its applications in image analysis-Part Ⅱ:A new stochastic model-based image segmentation technique for X-ray CT image[J].IEEE Trans Med Imag,1992,11(1):62-69.
  • 5Wang Y,Adah T,Xuan J,et al.Magnetic resonance image analysis by information theoretic criteria and stochastic site models[J].IEEE Trans InfTech Biomed,2001,5(2):150-8.
  • 6Merhav N.The estimation of the model order in exponential families[J].IEEE Trans Infor Theory,1989,35(5):1109-114.
  • 7Won CS,Derin H.Unsupervised segmentation of noisy and textured images using markov random fields[J].CVGIP:Graph Models Image Process,1992,54(4):308-28.
  • 8Won CS,Derin H.Unsupervised segmentation of noisy and textured images using markov random fields[J].CVGIP:Graph Models Image Process,1992,54(4):308-28.
  • 9Lee S,Crawford MM.Unsupervised multistage image classification using hierarchical clustering with a Bayesian similarity measure[J].IEEE Trans Image Process,2005,14(3):312-20.
  • 10Ruan S,Moretti B,Fadili J,et al.Fuzzy markovian segmentation in application of magnetic resonance images[J].Comput Vision Image Underst,2002,85(1):54-69.

共引文献7

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部