Euclidean embedding of the 11-dimensional M-theory turned out to require a very large space leaving lavish amounts of 242 dimensional pseudo truly empty “regions” devoid of space and time and consequently of anythin...Euclidean embedding of the 11-dimensional M-theory turned out to require a very large space leaving lavish amounts of 242 dimensional pseudo truly empty “regions” devoid of space and time and consequently of anything resembling ordinary physical energy density. It is shown here using Nash embedding that the ratio of “solid” M-theory spacetime to its required embedding “non-spacetime” is 1/22 for a classical theory and 1/22.18033989 for an analogous fractal theory. This then leads to a maximal ordinary energy density equation equal to that of Einstein’s famous formula E=mc2 but multiplied with in full agreement with previous results obtained using relatively more conventional methods including running the electromagnetic fine structure constant in the exact solution of the hydrogen atom. Consequently, the new equation corresponds to a quantum relativity theory which unlike Einstein’s original equation gives quantitative predictions which agree perfectly with the cosmological measurements of WMAP and the analysis of certain supernova events. Never the less in our view dark energy also exists being the energy of the quantum wave amounting to 95.5 present of the total Einstein theoretical energy which is blind to any distinction between ordinary energy of the quantum particle and the dark energy of the quantum wave. However, since measurement leads to the collapse of the Hawking-Hartle quantum wave, dark energy being a quantum wave non-ordinary energy could not possibly be measured in the usual way unless highly refined quantum wave non-demolition technology is developed if possible. It is a further reason that dark energy having a different sign to ordinary energy is the cause behind the anti gravity force which is pushing the universe apart and accelerating cosmic expansion. Consequently it can be seen as the result of anticlastic Cartan-like curvature caused by extra compactified dimensions of spacetime. A simple toy model demonstration of the effect of curvature in a “material” space is briefly discussed.展开更多
The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crys...The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crystallography and Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation. Following this road we arrive at a modified version of Einstein’s energy mass relation E = mc2 which predicts a cosmological energy density in astonishing accord with the WMAP and supernova measurements and analysis. We develop non-constructively what may be termed super symmetric Penrose fractal tiling and find that the isomorphic length of this tiling is equal to the self affinity radius of a universe which resembles an 11 dimensional Hilbert cube or a fractal M-theory with a Hausdorff dimension where. It then turns out that the correct maximal quantum relativity energy-mass equation for intergalactic scales is a simple relativistic scaling, in the sense of Weyl-Nottale, of Einstein’s classical equation, namely EQR = (1/2)(1/) moc2 = 0.0450849 mc2 and that this energy is the ordinary measurable energy density of the quantum particle. This means that almost 95.5% of the energy of the cosmos is dark energy which by quantum particle-wave duality is the absolute value of the energy of the quantum wave and is proportional to the square of the curvature of the curled dimension of spacetime namely where and is Hardy’s probability of quantum entanglement. Because of the quantum wave collapse on measurement this energy cannot be measured using our current technologies. The same result is obtained by involving all the 17 Stein spaces corresponding to 17 types of the wallpaper groups as well as the 230-11=219 three dimensional crystallographic group which gives the number of the first level of massless particle-like states in Heterotic string theory. All these diverse subjects find here a unified view point leading to the same result regarding the missing dark energy of the universe, which turned out to by synonymous with the absolute value of the energy of the Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation while ordinary energy is the energy of the quantum particle into which the Hawking-Hartle wave collapse at cosmic energy measurement. In other words it is in the very act of measurement which causes our inability to measure the “Dark energy of the quantum wave” in any direct way. The only hope if any to detect dark energy and utilize it in nuclear reactors is future development of sophisticated quantum wave non-demolition measurement instruments.展开更多
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ...The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.展开更多
In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion m...In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.展开更多
Rain attenuation at 355.2 GHz in the terahertz wave range was measured with our new 355.2 GHz measuring system under rainfall intensities up to 25 mm/hr. Rain attenuation coefficients were also calculated using four r...Rain attenuation at 355.2 GHz in the terahertz wave range was measured with our new 355.2 GHz measuring system under rainfall intensities up to 25 mm/hr. Rain attenuation coefficients were also calculated using four raindrop-size distributions, e Marshall-Palmer (M-P), Best, Polyakova-Shifrin (P-S) and Weibull distributions, and using a specific rain attenuation model for prediction methods recommended by ITU-R. Measurements of a terahertz wave taken at 355.2 GHz were compared with our calculations. Results showed that the propagation experiment was in very good agreement with a calculation from a specific attenuation model for use in prediction method recommended by ITU-R.展开更多
Using the bifurcation theory of dynamical systems to a class of nonlinear fourth order analogue of the B(m,n) equation, the existence of solitary wave solutions, periodic cusp wave solutions, compactons solutions, and...Using the bifurcation theory of dynamical systems to a class of nonlinear fourth order analogue of the B(m,n) equation, the existence of solitary wave solutions, periodic cusp wave solutions, compactons solutions, and uncountably infinite many smooth wave solutions are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are determined.展开更多
It is generally believed that the equilibrium range of wind wave spectrum is in the form of the-4 rather than-5 power law.However,in the widely applied P-M spectrum the equilibrium range is given in the form of-5 powe...It is generally believed that the equilibrium range of wind wave spectrum is in the form of the-4 rather than-5 power law.However,in the widely applied P-M spectrum the equilibrium range is given in the form of-5 power law.In the present paper,a spectrum for full development of wind waves is proposed using the form of the Neumann spectrum,but adopting the-4 power law for the equilibrium range.The proposed spectrum has been verified with NDBC buoy data and could be a substitute for the P-M spectrum.展开更多
By using the function transformation and proper Sub-ODE, exact travelling wave solutions of the m-KdV-Sine-Gordon and the m-KdV-Sinh-Gordon equation are obtained, from which exact travelling wave solutions of the m-Kd...By using the function transformation and proper Sub-ODE, exact travelling wave solutions of the m-KdV-Sine-Gordon and the m-KdV-Sinh-Gordon equation are obtained, from which exact travelling wave solutions of the m-KdV equation, the Sine-Gordon equation and the Sinh-Gordon equation are derived.展开更多
A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
文摘Euclidean embedding of the 11-dimensional M-theory turned out to require a very large space leaving lavish amounts of 242 dimensional pseudo truly empty “regions” devoid of space and time and consequently of anything resembling ordinary physical energy density. It is shown here using Nash embedding that the ratio of “solid” M-theory spacetime to its required embedding “non-spacetime” is 1/22 for a classical theory and 1/22.18033989 for an analogous fractal theory. This then leads to a maximal ordinary energy density equation equal to that of Einstein’s famous formula E=mc2 but multiplied with in full agreement with previous results obtained using relatively more conventional methods including running the electromagnetic fine structure constant in the exact solution of the hydrogen atom. Consequently, the new equation corresponds to a quantum relativity theory which unlike Einstein’s original equation gives quantitative predictions which agree perfectly with the cosmological measurements of WMAP and the analysis of certain supernova events. Never the less in our view dark energy also exists being the energy of the quantum wave amounting to 95.5 present of the total Einstein theoretical energy which is blind to any distinction between ordinary energy of the quantum particle and the dark energy of the quantum wave. However, since measurement leads to the collapse of the Hawking-Hartle quantum wave, dark energy being a quantum wave non-ordinary energy could not possibly be measured in the usual way unless highly refined quantum wave non-demolition technology is developed if possible. It is a further reason that dark energy having a different sign to ordinary energy is the cause behind the anti gravity force which is pushing the universe apart and accelerating cosmic expansion. Consequently it can be seen as the result of anticlastic Cartan-like curvature caused by extra compactified dimensions of spacetime. A simple toy model demonstration of the effect of curvature in a “material” space is briefly discussed.
文摘The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crystallography and Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation. Following this road we arrive at a modified version of Einstein’s energy mass relation E = mc2 which predicts a cosmological energy density in astonishing accord with the WMAP and supernova measurements and analysis. We develop non-constructively what may be termed super symmetric Penrose fractal tiling and find that the isomorphic length of this tiling is equal to the self affinity radius of a universe which resembles an 11 dimensional Hilbert cube or a fractal M-theory with a Hausdorff dimension where. It then turns out that the correct maximal quantum relativity energy-mass equation for intergalactic scales is a simple relativistic scaling, in the sense of Weyl-Nottale, of Einstein’s classical equation, namely EQR = (1/2)(1/) moc2 = 0.0450849 mc2 and that this energy is the ordinary measurable energy density of the quantum particle. This means that almost 95.5% of the energy of the cosmos is dark energy which by quantum particle-wave duality is the absolute value of the energy of the quantum wave and is proportional to the square of the curvature of the curled dimension of spacetime namely where and is Hardy’s probability of quantum entanglement. Because of the quantum wave collapse on measurement this energy cannot be measured using our current technologies. The same result is obtained by involving all the 17 Stein spaces corresponding to 17 types of the wallpaper groups as well as the 230-11=219 three dimensional crystallographic group which gives the number of the first level of massless particle-like states in Heterotic string theory. All these diverse subjects find here a unified view point leading to the same result regarding the missing dark energy of the universe, which turned out to by synonymous with the absolute value of the energy of the Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation while ordinary energy is the energy of the quantum particle into which the Hawking-Hartle wave collapse at cosmic energy measurement. In other words it is in the very act of measurement which causes our inability to measure the “Dark energy of the quantum wave” in any direct way. The only hope if any to detect dark energy and utilize it in nuclear reactors is future development of sophisticated quantum wave non-demolition measurement instruments.
基金Joint Earthquake Science Foundation of China (201001).
文摘The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.
基金Supported by the National Natural Science Foundation of China (10871075)Natural Science Foundation of Guangdong Province,China (9151064201000040)
文摘In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.
文摘Rain attenuation at 355.2 GHz in the terahertz wave range was measured with our new 355.2 GHz measuring system under rainfall intensities up to 25 mm/hr. Rain attenuation coefficients were also calculated using four raindrop-size distributions, e Marshall-Palmer (M-P), Best, Polyakova-Shifrin (P-S) and Weibull distributions, and using a specific rain attenuation model for prediction methods recommended by ITU-R. Measurements of a terahertz wave taken at 355.2 GHz were compared with our calculations. Results showed that the propagation experiment was in very good agreement with a calculation from a specific attenuation model for use in prediction method recommended by ITU-R.
文摘Using the bifurcation theory of dynamical systems to a class of nonlinear fourth order analogue of the B(m,n) equation, the existence of solitary wave solutions, periodic cusp wave solutions, compactons solutions, and uncountably infinite many smooth wave solutions are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are determined.
基金the National Natural Science Foundation of China (40830959)the Ministry of Science and Technology of China (2011BAC03B01)
文摘It is generally believed that the equilibrium range of wind wave spectrum is in the form of the-4 rather than-5 power law.However,in the widely applied P-M spectrum the equilibrium range is given in the form of-5 power law.In the present paper,a spectrum for full development of wind waves is proposed using the form of the Neumann spectrum,but adopting the-4 power law for the equilibrium range.The proposed spectrum has been verified with NDBC buoy data and could be a substitute for the P-M spectrum.
基金Supported by the National Science Foundation of Education Department of Henan Province(2011B110013)
Acknowledgement The authors would like to express their sincere thanks to Professor Wang Mingliang for his enthusiastic help and encouragement.
文摘By using the function transformation and proper Sub-ODE, exact travelling wave solutions of the m-KdV-Sine-Gordon and the m-KdV-Sinh-Gordon equation are obtained, from which exact travelling wave solutions of the m-KdV equation, the Sine-Gordon equation and the Sinh-Gordon equation are derived.
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.