期刊文献+
共找到319,626篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in the Synthesis of α-Trifluoromethyl Ketones and Their Application via Defluorinative Reactions 被引量:1
1
作者 Cao Sufang Liu Yunyun Wan Jieping 《有机化学》 北大核心 2025年第1期86-103,共18页
α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organi... α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives. 展开更多
关键词 α-trifluoromethyl ketone synthetic method synthetic application DEFLUORINATION cascade reaction
原文传递
Improved methods,properties,applications and prospects of microbial induced carbonate precipitation(MICP)treated soil:A review 被引量:2
2
作者 Xuanshuo Zhang Hongyu Wang +3 位作者 Ya Wang Jinghui Wang Jing Cao Gang Zhang 《Biogeotechnics》 2025年第1期34-54,共21页
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi... Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications. 展开更多
关键词 Soil improvement Bio-cement MICP Improved methods Field application cases
在线阅读 下载PDF
Liquid metal composites:Recent advances and applications 被引量:1
3
作者 Chunghyeon Choi Liyang Liu Byungil Hwang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1008-1024,共17页
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ... Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development. 展开更多
关键词 COMPOSITES liquid metal POLYMER applicationS ALLOYS
在线阅读 下载PDF
A review on applications and challenges of carbon nanotubes in lithium-ion battery 被引量:1
4
作者 Zhen Tong Chao Lv +3 位作者 Guo-Dong Bai Zu-Wei Yin Yao Zhou Jun-Tao Li 《Carbon Energy》 2025年第2期66-97,共32页
Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as fre... Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified. 展开更多
关键词 applicationS carbon nanotubes CHALLENGES energy storage lithium-ion batteries
在线阅读 下载PDF
Multi-function and generalized intelligent code-bench based on Monte Carlo method(MagicMC)for nuclear applications 被引量:1
5
作者 Zhen-Ping Chen Ai-Kou Sun +5 位作者 Ji-Chong Lei Cheng-Wei Liu Yi-Qing Zhang Chao Yang Jin-Sen Xie Tao Yu 《Nuclear Science and Techniques》 2025年第4期199-219,共21页
The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation ... The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation shielding design,and medical physics.However,with the rapid advancement of new nuclear energy systems,the Monte Carlo method faces challenges in efficiency,accuracy,and adaptability,limiting its effectiveness in meeting modern design requirements.Overcoming technical obstacles related to high-fidelity coupling,high-resolution computation,and intelligent design is essential for using the Monte Carlo method as a reliable tool in numerical analysis for these new nuclear energy systems.To address these challenges,the Nuclear Energy and Application Laboratory(NEAL)team at the University of South China developed a multifunctional and generalized intelligent code platform called MagicMC,based on the Monte Carlo particle transport method.MagicMC is a developing tool dedicated to nuclear applications,incorporating intelligent methodologies.It consists of two primary components:a basic unit and a functional unit.The basic unit,which functions similarly to a standard Monte Carlo particle transport code,includes seven modules:geometry,source,transport,database,tally,output,and auxiliary.The functional unit builds on the basic unit by adding functional modules to address complex and diverse applications in nuclear analysis.MagicMC introduces a dynamic Monte Carlo particle transport algorithm to address time-space particle transport problems within emerging nuclear energy systems and incorporates a CPU-GPU heterogeneous parallel framework to enable high-efficiency,high-resolution simulations for large-scale computational problems.Anticipating future trends in intelligent design,MagicMC integrates several advanced features,including CAD-based geometry modeling,global variance reduction methods,multi-objective shielding optimization,high-resolution activation analysis,multi-physics coupling,and radiation therapy.In this paper,various numerical benchmarks-spanning reactor transient simulations,material activation analysis,radiation shielding optimization,and medical dosimetry analysis-are presented to validate MagicMC.The numerical results demonstrate MagicMC's efficiency,accuracy,and reliability in these preliminary applications,underscoring its potential to support technological advancements in developing high-fidelity,high-resolution,and high-intelligence MC-based tools for advanced nuclear applications. 展开更多
关键词 Monte Carlo Particle transport Intelligent design Nuclear application
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
6
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Preparation and applications of calcium ferrite as a functional material:A review
7
作者 Xiuli Han Bowen Duan +2 位作者 Lei Liu Shilong Fang Weiwei Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期292-310,共19页
Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir... Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization. 展开更多
关键词 calcium ferrite mineral functional materials PREPARATION application PERSPECTIVES
在线阅读 下载PDF
Immunomodulatory effects and clinical application of exosomes derived from mesenchymal stem cells 被引量:1
8
作者 Yang-Fei Yi Zi-Qi Fan +5 位作者 Can Liu Yi-Tong Ding Yao Chen Jie Wen Xiao-Hong Jian Yu-Fei Li 《World Journal of Stem Cells》 2025年第3期1-15,共15页
Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promi... Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations. 展开更多
关键词 Mesenchymal stem cells EXOSOMES Immunomodulatory effects Clinical application Therapeutic potential
暂未订购
Grape Guard:A YOLO-based mobile application for detecting grape leaf diseases 被引量:1
9
作者 Sajib Bin Mamun Israt Jahan Payel +3 位作者 Md.Taimur Ahad Anthony S.Atkins Bo Song Yan Li 《Journal of Electronic Science and Technology》 2025年第1期60-75,共16页
Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape... Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape leaves.Automatic detection can reduce the chances of leaf diseases affecting other healthy plants.Several studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile applications.This study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the model.The results of this study were relied on the YOLO architecture,specifically YOLOv5 and YOLOv8.After extensive experiments with different image sizes,YOLOv8 performed better than YOLOv5.YOLOv8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf diseases.The Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines. 展开更多
关键词 Bacterial diseases Grape Guard Mobile-based application YOLOv5 YOLOv8
在线阅读 下载PDF
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:1
10
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Recent development of flexible perovskite solar cells and its potential applications to aerospace 被引量:1
11
作者 Shaoqi Bian Guangshu Xu +4 位作者 Shufang Zhang Qi Jiang Xiaoguang Ma Jingbi You Xinbo Chu 《Journal of Semiconductors》 2025年第5期20-28,共9页
Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent ... Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage. 展开更多
关键词 flexible perovskite solar cells power-conversion efficiency stability aerospace application potential
在线阅读 下载PDF
Function,mechanism of action,metabolism,and commercial application of Lonicera japonica:a review 被引量:1
12
作者 Xinli Yang Dan Yan 《Food Science and Human Wellness》 2025年第3期783-805,共23页
Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,includ... Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,including antiviral,antibacterial,antioxidant,hypoglycemic and lipid-lowering,and anti-inflammatory effects.This review summarizes the health effects and pharmacodynamic mechanisms of L.japonica extracts and the major active ingredients in these extracts,and the structures,metabolic process in vivo,and biotransformation processes of these compounds.In addition,the current status of the development of L.japonica-related functional foods is summarized.The aim is to provide a theoretical basis and reference for the further development and use of the active ingredients in L.japonica as functional foods for disease prevention and treatment. 展开更多
关键词 Lonicera japonica extract and functional components Health effects MECHANISMS Commercial application
在线阅读 下载PDF
Split nitrogen application increases maize root growth,yield,and nitrogen use efficiency under soil warming conditions 被引量:2
13
作者 Zhenqing Xia Yuxiang Gong +3 位作者 Xiangyue Lyu Junchen Lin Yi Yang Haidong Lu 《The Crop Journal》 2025年第2期565-575,共11页
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e... The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress. 展开更多
关键词 Maize(Zea mays L.) Soil warming Split nitrogen application Root growth Nitrogen use efficiency Grain yield
在线阅读 下载PDF
Transcutaneous electrical acupoint stimulation(TEAS):Applications and challenges 被引量:1
14
作者 Wen-lai ZHOU Jing LI +4 位作者 Xiao-ning SHEN Xia-tong HUA Jing XIE Yan-li ZHOU Lu ZHU 《World Journal of Acupuncture-Moxibustion》 2025年第1期10-16,共7页
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic... Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application. 展开更多
关键词 Transcutaneous electrical acupoint stimulation(TEAS) Clinical application Influence factors Parameter selection
原文传递
Application of nanotechnology to dentistry:Impact of graphene nanocomposites on clinical air quality
15
作者 Ruth Rodríguez Montaño Mario A Alarcón-Sánchez +2 位作者 Melissa Martínez Nieto Juan J Varela Hernández Sarah M LomelíMartínez 《World Journal of Clinical Cases》 SCIE 2025年第8期1-7,共7页
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st... Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health. 展开更多
关键词 GRAPHENE NANOCOMPOSITES Antibacterial activity Biomedical applications Air disinfection
暂未订购
Research progress on traditional Chinese medicine application in osteoarthritis
16
作者 Pei Feng Zi-Yang Lin +6 位作者 Ming-Jie Liang Xian-Long Zhang Lan-Qing Meng Ting-Ting Duan Zheng-Hai Li Xiong-Si Tan Jun-Zheng Yang 《Traditional Medicine Research》 2025年第7期71-86,共16页
Osteoarthritis(OA)is a kind of joint diseases characterized by fibrosis,ulceration,and loss of articular cartilage and articular surrounding tissues caused by various factors,the main symptoms of OA include joint pain... Osteoarthritis(OA)is a kind of joint diseases characterized by fibrosis,ulceration,and loss of articular cartilage and articular surrounding tissues caused by various factors,the main symptoms of OA include joint pain,joint stiffness,and loss of joint function,and OA has the higher prevalence rate and has been listed as one of the four major disabling diseases,seriously affecting people’s lives and health.Traditional Chinese medicine(TCM)is a comprehensive science based on the theory of Yin Yang(one TCM theory,the material world is believed to be nurtured,developed,and changed under the influence of Yin and Yang)and Five Elements(The five most basic substances-wood,fire,earth,metal,and water-are considered indispensable elements that make up the world),based on TCM theory and practical experience it can play the important role in prevention,diagnosis,treatment,rehabilitation,and health care in OA,exhibit the great application potential for OA treatment.In this review,we have summarized the recent research progress in the application of TCM in OA,including an analysis of underlying mechanisms,application limitations,and potential solutions,found that the material basis and targets of the therapeutic component of TCM,the quality control and the mechanism of TCM application in OA are not very clear,which may become the application limitation of TCM in OA.We hope that this review will offer valuable insights to researchers in the field. 展开更多
关键词 TCM OSTEOARTHRITIS preclinical application clinical application
暂未订购
The Application of Formative Evaluation System in Clinical Laboratory Teaching
17
作者 Guifen Wei 《Journal of Clinical and Nursing Research》 2025年第2期7-12,共6页
Theoretical education and practical education are very important in clinical laboratory teaching.The teaching evaluation system is one of the important means to test the quality of course teaching.The traditional summ... Theoretical education and practical education are very important in clinical laboratory teaching.The teaching evaluation system is one of the important means to test the quality of course teaching.The traditional summative evaluation needs to be improved in terms of scientificity and impartiality,and its guiding effect on teaching reform is limited.Therefore,this paper proposes to apply formative evaluation to clinical laboratory teaching to remobilize students'learning enthusiasm and provide valuable guidance for the subsequent teaching reform,hoping to achieve the purpose of improving the quality of laboratory teaching. 展开更多
关键词 Formative evaluation Clinical test application path application effect
在线阅读 下载PDF
Diamond related materials for energy storage and conversion applications
18
作者 YU Si-yu WANG Xi-yan YANG Nian-jun 《新型炭材料(中英文)》 北大核心 2025年第4期973-992,共20页
Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar... Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed. 展开更多
关键词 Diamond related materials Electrochemical energy storage Electrocatalytic energy conversion Solar energy conversion Future energy application directions
在线阅读 下载PDF
A review on the function and application of polyphenol compound of quinoa
19
作者 Jianle Si Keshuang Guo +3 位作者 Xin Li Yingtong Ma Jianxin Song Xiangrong Zhang 《Journal of Polyphenols》 2025年第1期32-43,共12页
Quinoa is pseudo cereal and considered as full nutritional food for its functional ingredients such as peptides,polysaccharides,saponins and polyphenols.Up to now,over 20 phenolic compounds have been reported in quino... Quinoa is pseudo cereal and considered as full nutritional food for its functional ingredients such as peptides,polysaccharides,saponins and polyphenols.Up to now,over 20 phenolic compounds have been reported in quinoa,and these polyphenols are related to anti-cancer,anti-inflammatory,anti-obesity,anti-diabetic and cardioprotective activities.Recently,more and more attentions are focused on quinoa in the food and pharmaceutical fields.Many new products such as bakery,beverage and meat product made from quinoa are popular in the market.This article presents a review of the literature on the function and application of polyphenols in quinoa.The review will benefit the researchers working with nutrition,functional diets of quinoa. 展开更多
关键词 QUINOA POLYPHENOLS function application
在线阅读 下载PDF
State-of-the-art Review of Metallic Microneedles:Structure,Fabrication,and Application
20
作者 Zhishan Yuan Hongzhao Zhang +4 位作者 Wentao Hu Xiao Yu Si Qin Chengyong Wang Fenglin Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期84-105,共22页
Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materi... Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materials commonly used to manufacture MNs include silicon,polymers,ceramics and metals.Metallic MNs(MMNs)have drawn significant attention owing to its superior mechanical properties,machinability,and biocompatibility.This paper is a state-of-the-art review of the structure,fabrication technologies,and applications of MMNs.According to the relative position of the axis of MN and the plane of the substrate,MMNs can be divided into in-plane and out-of-plane.Solid,hollow,coated and porous MMNs are also employed to characterize their internal and surface structures.Until now,numerous fabrication technologies,including cutting tool machining,non-traditional machining,etching,hot-forming,and additive manufacturing,have been used to fabricate MMNs.The recent advances in the application of MMNs in drug delivery,disease diagnosis,and cosmetology are also discussed in-depth.Finally,the shortcomings in the fabrication and application of MMNs and future directions for development are highlighted. 展开更多
关键词 METAL MICRONEEDLES STRUCTURE FABRICATION application
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部